诺贝尔物理学奖(2024)公布

芯片迷不休息 2024-10-10 09:35:26
失效分析 赵工 半导体工程师 2024年10月09日 08:45 北京

北京时间10月8日下午5点45分许,2024年诺贝尔物理学奖揭晓。美国和加拿大科学家John J. Hopfield、Geoffrey E. Hinton获奖,以表彰他们“基于人工神经网络实现机器学习的基础性发现和发明”。

2024年的诺贝尔奖单项奖金为1100万瑞典克朗,与2023年持平,合人民币744.117万元。

John J. Hopfield, 1933年出生于美国伊利诺伊州芝加哥。1958年毕业于美国纽约州伊萨卡康奈尔大学博士。美国新泽西州普林斯顿大学教授。

Geoffrey E. Hinton, 1947年出生于英国伦敦。1978年获得英国爱丁堡大学博士学位。加拿大多伦多大学教授。

诺奖官网介绍

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2024 to

John J. HopfieldPrinceton University, NJ, USA

Geoffrey E. HintonUniversity of Toronto, Canada

“for foundational discoveries and inventions that enable machine learning with artificial neural networks”

They trained artificial neural networks using physics

This year’s two Nobel Laureates in Physics have used tools from physics to develop methods that are the foundation of today’s powerful machine learning. John Hopfield created an associative memory that can store and reconstruct images and other types of patterns in data. Geoffrey Hinton invented a method that can autonomously find properties in data, and so perform tasks such as identifying specific elements in pictures.

When we talk about artificial intelligence, we often mean machine learning using artificial neural networks. This technology was originally inspired by the structure of the brain. In an artificial neural network, the brain’s neurons are represented by nodes that have different values. These nodes influence each other through con­nections that can be likened to synapses and which can be made stronger or weaker. The network is trained, for example by developing stronger connections between nodes with simultaneously high values. This year’s laureates have conducted important work with artificial neural networks from the 1980s onward.

John Hopfield invented a network that uses a method for saving and recreating patterns. We can imagine the nodes as pixels. The Hopfield network utilises physics that describes a material’s characteristics due to its atomic spin – a property that makes each atom a tiny magnet. The network as a whole is described in a manner equivalent to the energy in the spin system found in physics, and is trained by finding values for the connections between the nodes so that the saved images have low energy. When the Hopfield network is fed a distorted or incomplete image, it methodically works through the nodes and updates their values so the network’s energy falls. The network thus works stepwise to find the saved image that is most like the imperfect one it was fed with.

Geoffrey Hinton used the Hopfield network as the foundation for a new network that uses a different method: the Boltzmann machine. This can learn to recognise characteristic elements in a given type of data. Hinton used tools from statistical physics, the science of systems built from many similar components. The machine is trained by feeding it examples that are very likely to arise when the machine is run. The Boltzmann machine can be used toify images or create new examples of the type of pattern on which it was trained. Hinton has built upon this work, helping initiate the current explosive development of machine learning.

“The laureates’ work has already been of the greatest benefit. In physics we use artificial neural networks in a vast range of areas, such as developing new materials with specific properties,” says Ellen Moons, Chair of the Nobel Committee for Physics.

Illustrations

The illustrations are free to use for non-commercial purposes. Attribute ”©Johan Jarnestad/The Royal Swedish Academy of Sciences”.

Illustration: The Nobel Prize in Physics 2024 (pdf)Illustration: Natural and artificial neurons (pdf)Illustration: Memories are stored in a landscape (pdf)Illustration: Different types of network (pdf)

过去8年诺贝尔物理学奖得主名单

2023年,美国科学家Pierre Agostini,德国科学家Ferenc Krausz和瑞典科学家Anne L’Huillier获奖,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”。

2022年,法国科学家Alain Aspect、美国科学家John F.Clauser和奥地利科学家Anton Zeilinger获奖 ,以表彰他们“用纠缠光子进行的实验,建立了贝尔不等式的违反,并开创了量子信息科学”。

2021年,美籍日裔科学家Syukuro Manabe、德国科学家Klaus Hasselmann和意大利科学家Giorgio Parisi获奖,获奖理由是“对我们理解复杂物理系统的开创性贡献”。

2020年,Roger Penrose,获奖理由是发现黑洞的形成是对广义相对论的有力预测;Reinhard Genzel及Andrea Ghez获奖理由是在银河系中心发现了一个超大质量的致密天体。

2019年,美国科学家James Peebles获奖,获奖理由是“在物理宇宙学的理论发现”;另外两位获奖者是瑞士科学家Michel Mayor和Didier Queloz,获奖理由是“发现了一颗围绕类太阳恒星运行的系外行星”。

2018年,美法加三位科学家Arthur Ashkin、Gerard Mourou和Donna Strickland获奖,获奖理由是“在激光物理学领域所作出的开创性发明”。

2017年,三位美国科学家Rainer Weiss、Barry C. Barish和Kip S. Thorne获奖,获奖理由是“对LIGO探测器和引力波观测的决定性贡献”。

2016年,英美三位科学家David J. Thouless、F. Duncan M. Haldane、J. Michael Kosterlitz获奖,获奖理由是“理论发现拓扑相变和拓扑相物质”。

KouShare 蔻享学术

半导体工程师

半导体经验分享,半导体成果交流,半导体信息发布。半导体行业动态,半导体从业者职业规划,芯片工程师成长历程。216篇原创内容公众号

0 阅读:1

芯片迷不休息

简介:感谢大家的关注