世良情感网

量子机上模拟虫洞传输首成 引言:探索时空与量子的交汇 近年来,将爱因斯坦广义相对

量子机上模拟虫洞传输首成 引言:探索时空与量子的交汇 近年来,将爱因斯坦广义相对论与量子力学统一的“量子引力”研究备受瞩目。1935年,爱因斯坦—罗森桥(wormhole)作为广义相对论的数学解提出后,科学家一直设想若能保持虫洞可穿越状态,或可实现瞬时跨越遥远时空的“快捷通道”。2022年末,加州理工学院(Caltech)与美国费米国家加速器实验室(Fermilab)等机构的研究团队,首次在量子计算机上用Sachdev–Ye–Kitaev(SYK)模型成功“模拟”了可遍历虫洞,并将一个量子比特(qubit)完好无损地送出,对理解量子引力提供了实验层面的强力佐证。 SYK模型:连接量子与引力的桥梁 SYK模型最初由Sachdev、Ye及Kitaev等人提出,是一类描述大量相互作用的“Majorana费米子”体系的模型,具有与简化黑洞动力学相似的“全局纠缠”和“信息搅拌”特性,因此被视为量子引力的理想“玩具模型”。在该模型的理论框架下,两组SYK系统间通过精心设计的双线性交互,可在其全息对应(holographic duality)下再现可遍历虫洞的关键物理机制:负能量脉冲维持喉部开放,并允许信息通过。 实验实现:Sycamore上的“虫洞” 研究团队选用谷歌的Sycamore量子处理器,通过以下步骤模拟虫洞传输: 稀疏化SYK模型:完整SYK模型需处理数百乃至上千体相互作用,不适合现有量子硬件。团队采用“稀疏化”(sparsification)技术,仅保留最强的四体随机耦合,构建7粒子、仅164个双比特门的简化模型,同时保留关键的“纠缠与搅拌”特性。 构建量子电路:在九比特回路上编码两套SYK系统,利用量子门将初始态置于“热力学双态”(thermofield double)纠缠态,为虫洞模拟奠定全息条件。 施加负能量脉冲:模拟理论上保持虫洞开放所需的负能量扰动,验证仅此脉冲能让信息穿越——正能量相同操作下,则无信息输出。 信息传输验证:将一个待测qubit注入第一套SYK系统后,监测其在第二套系统中被“精准还原”,实现了经典意义上“虫洞穿越”与量子遥传(teleportation)相结合的双重示范。 关键发现与物理意义 完美保真度:量子比特在穿越后保持原有态,表明SYK模型能真实再现虫洞信息传输的无损特性。 负能量效应验证:实验确认,负能量脉冲是开启可遍历虫洞的必要条件,首度在实验中验证了广义相对论对负能量需求的预言。 ER=EPR实验证据:信息“穿越虫洞”与量子纠缠瞬时传输的等价性,为“爱因斯坦—罗森=爱因斯坦—波多尔斯基—罗森”(ER=EPR)猜想提供了实验依据。 与量子遥传及其他模拟的对比 此前多项量子计算机实现的“量子遥传”仅限于两个量子节点之间的经典+纠缠资源交互,本次虫洞实验不仅实现了量子态传输,还融合了量子引力效应的负能量需求,突破了纯信息传输与引力模型结合的壁垒。此外,一些评论指出,超小规模完全可交换模型亦能复制类似传输信号,但仅限于量子算法特征,未包含负能量时序与热化—搅拌动力学,无法代表虫洞的引力物理。 未来前景:安全通信与量子引力实验室 超安全量子信道:基于虫洞模拟的全息通信协议,或可构建对任何窃听者“完全不可见”的量子信道,为数据安全打开新路径。 量子记忆与无能耗循环:虫洞回路示范了在拓扑保护下的量子信息闭环,为持久量子存储与无源量子反馈控制提供了灵感。 量子引力“实验室”:借助日益扩容的量子硬件,未来可模拟更复杂的引力系统——如黑洞信息回味、引力波量子效应等,将理论“悬案”带入可操控的实验范畴。 结语:让宇宙不再神秘 Caltech与Fermilab团队在Sycamore处理器上实现的SYK虫洞模拟,虽未打开真实时空通道,却在量子与引力交汇处掀开了一角“宇宙帷幕”。当我们在量子比特的舞动中,窥见虫洞传输与负能量脉冲的奇异共鸣,意味着人类正迈向用实验手段检验宇宙深层法则的新纪元——在宏观天体与微观量子之间,科学的桥梁正日益坚固。