底层技术派
⊙技术和商业化路线困局人工智能产业化的本质数据困局算力困局
⊙潜在破局方案借鉴互联网时代的思考短期投资策略长期可能演变⊙总结*笔者为华映资本海外合伙人、北大计算机学士及美国南加大多智能体(Agent)方向博士,Robocup冠军队成员、腾讯云计算早期T4专家级架构师。本文既非学术论文、也非商业行研报告,而是以一个AI学界出身、亲历硅谷多周期的投资人视角分析现况和预测趋势。观点可能存在很多反共识之处,未必正确,但希望这些视角能对您有所启发。同时,硅星人驻硅谷资深记者Jessica对本文内容亦有贡献。AI投资逻辑困局
目前AI领域投资人以及创业者 (尤其在国内)主要分成下面两个"流派":>>>> 应用场景派持这个观点的投资人,其投资标的是依靠对底座模型的调用实现垂直行业大模型商业化的公司,创始人通常是场景侧或产品背景,对于底座模型的深入理解并非必要。在做该种投资选择时,需要应对以下问题的挑战:1. 预测LLM能推动应用场景爆发的底层driver究竟是什么;2. 这个driver是否能持续、未来发展走向是什么;3. 应用的全面爆发需要经历哪些milestones。如果投资人对以上问题没有完全自洽的解答,盲目乐观押注应用场景的爆发,将催生投资和创业的泡沫。
>>>> 底层技术派
持这个观点的VC或创业者更聚焦底座大模型,即底层平台,认为未来一切都由AI平台驱动,所以不太纠结上层应用。这些大模型平台公司目前普遍遇到下面几个瓶颈:1. 上层杀手级应用迟迟未出现,很多时候需要底座公司亲自下场去场景侧做定制化交付和实施;应用少也造成数据闭环无法形成;2. 上层应用门槛薄,上下两层之间的边界不清晰,底座的版本更新会“不小心”碾压上层应用,如GPT-3.5更新至GPT-4后对Jasper的碾压;3. 训练数据开始"枯竭", Scaling law面临停滞;4. 大模型平台公司对算力越来越依赖,成为"金钱的游戏"。前两条其实也恰是应用场景派遇到的根本问题,当下在上层应用迟未爆发、甚至业界无法预测爆发时间点及爆发所需经历milestones的背景下,上述两类投资方法论暂时未能奏效。事实上这两种"流派"的区分,恰恰是受互联网时代的公司可以清晰切分为"互联网应用"和"互联网平台"上下两层的思维惯性所影响,但大模型在当前并没有到达互联网时代这个"分层解耦"的阶段,所以这两个流派的划分本身就值得商榷。技术和商业化路线困局
>>>> 人工智能产业化的本质要破解上文提到的诸多疑问,我们必须先从理解大模型乃至整个人工智能浪潮的本质开始。广义的人工智能在1956年的达特茅斯会议即宣告诞生,但AI真正的产业化直到2012年左右AlexNet的出现才实现。AI产业化主要经历了下面两个阶段:
1. AI 1.0 深度学习 (2012年AlexNet引发):深度学习算法将海量数据进行训练后输出模型,来替代计算机科学几十年来积累的算法和规则,从而第一次实现产业化。深度学习