一套相当扎实的上下文工程(Context Engineering)模板,核心亮点如下:
• 结构清晰,将提示拆解为10个离散组件,便于维护和复用。
• 重点强调“任务上下文”和“语气上下文”,确保模型角色设定与风格统一。
• 引入“背景资料、文档和图片”作为参考内容,提升回答的准确性和丰富度。
• 明确交互规则和示例,帮助模型更好地理解任务细节和用户期望。
• 设计“历史对话”和“即时请求”分层处理,增强上下文连贯性与灵活性。
• 独特加入“思考步骤/深呼吸”环节,促使模型先构思再回应,减少跑题风险。
• 输出格式化和预填充回应提升响应规范性和效率。
此模板体现了对提示工程从结构化管理、上下文利用、到模型行为控制的系统性思考,适合高频调用、长链对话或复杂任务场景,尤其适用于需要稳定表现和可维护性的生产环境。
详见视频解析🔗www.youtube.com/watch?v=ysPbXH0LpIE
相关讨论🔗x.com/mattpocockuk/status/1958179930262356032
人工智能 大模型 PromptEngineering AI开发 上下文管理