想象一下,未来你的手机就像一位贴心的私人助理,能够洞察你的喜好、日程,甚至预测你的情绪。听起来很棒,但你可能会担心隐私泄露的问题。别担心,最近一种名为“联邦学习”的创新技术或许能解决这个问题。它让各个手机上的AI模型只需相互学习彼此的经验,而无需直接交换原始数据,就像我们协作学习时只分享心得和方法,而不抄袭他人作业。这样既能让AI变聪明,又能保护用户隐私。
然而,联邦学习也面临挑战:模型之间交换的参数数量庞大,通信成本很高。但中科院计算所最近提出的“FUELS”方法或许能解决这些问题。它通过寻找数据间的相似性,帮助模型更好地理解彼此,还能节约94%的通信成本。
个性化联邦学习技术让AI更懂你,同时很好地保护了隐私,还让AI变得更加聪明高效。这项技术的出现,让我们对未来AI的发展有了更多期待。相信在不久的将来,我们就能享受到更加智能、安全、高效的AI助手带来的便利!
论文标题:Personalized Federated Learning for Spatio-Temporal Forecasting: A Dual Semantic Alignment-Based Contrastive Approach
论文链接:https://arxiv.org/pdf/2404.03702.pdf
GPT-3.5研究测试:https://hujiaoai.cn
GPT-4研究测试:https://higpt4.cn
Claude-3研究测试(全面吊打GPT-4):https://hiclaude3.com
方法详解:双重语义对齐的对比学习方法本文提出的 FUELS 框架主要包括三个关键技术:编码器与解码器、客户端内对比任务和客户端间对比任务。下面将逐一对其进行详细介绍。
1. 编码器与解码器在 FUELS 中预测模型 被拆分为两个部分:编码器 和解码器 。
编码器的作用是将输入数据 映射到一个 维的隐藏空间。具体而言,编码器采用两个门控循环单元(GRU)模型来分别提取输入数据的短期特征和周期性特征,记为 和 , 和 分别表示输入数据 的短期子序列和周期性子序列。编码器的输出表示为 ,论文中将短期特征 GRU 和周期特征 GRU 编码的结果级联生成编码器的表示:
解码器以编码器输出 作为输入,生成最终的预测结果 ,论文中采用简单的全连接层作为解码器结构。
2. 客户端内对比任务客户端内对比任务的目的是通过对齐不同时间表示的语义相似性,将时间异质性引入到隐空间表示中。为此,本文设计了一个困难负样本过滤模块,用于自适应对齐真实的负样本对。
作者首先采用时空偏移方式生成客户端 的增广数据集 。具体而言,对于客户端中的数据 生成对应的增广样本 ,其表示记为 ,其中第 行表示 第 个时间戳的时间表示。
然后作者通过一个可学习的过滤矩阵 得到过滤之后的相似矩阵 , 被用于区分困难负样本和真实负样本:
上面的过程可以筛选出时间戳不同但语义相似的表征。对比任务的目标是排斥语义不同的表征,从而有效地为表征注入时间异质性。
3. 客户端间对比任务客户端间对比任务旨在通过共享不同客户端的语义原型,在保留空间异质性的同时实现知识共享。为此作者将客户端所有数据表示的均值定义为客户端级语义原型 :
然后设计了一种基于 Jensen-Shannon 散度(JSD)的聚合机制,用于对齐不同客户端的原型,并为每个客户端生成定制化的全局正负原型。具体而言,服务器根据 JSD 值将所有其他客户端划分为第 个客户端的正样本集 和负样本集 。最后通过平均聚合得到全局正负原型 和 :
综上,FUELS 的本地训练目标可表示为最小化三个损失函数组成的联合损失函数:
通过联合优化三个损失函数,可以使本地模型在注入时空异质性的同时,实现较好的预测性能。
除此之外,本文还对 FUELS 的泛化性、收敛性与复杂度进行理论分析,以此证明 FUELS 的有效性。
实验:FUELS vs. 主流联邦学习方法1. 个性化联邦实验设置本文在三个真实的数据集上评估了 FUELS 的性能,包括短信服务(SMS)、语音呼叫(Call)和互联网服务(Net)。此外,还在 METR-LA 交通流量预测基准数据集上进行了实验。
实验中将 FUELS 与6种主流联邦学习方法进行了比较,包括FedAvg、FedProx、FedRep、PerFedAvg、pFedMe 和 FedDA。为了全面评估模型性能,本文采用了均方误差(MSE)和平均绝对误差(MAE)两个评价指标。
在超参数设置方面,编码器使用具有128个单元的 GRU 模型,解码器采用全连接层。设定了合理的本地批大小、窗口大小、温度系数等参数。此外,客户端选择比例 设为0.2,训练轮数为200轮。
2. 主要实验结果实验结果表明,FUELS 在所有数据集上都取得了优于基线方法的性能,且通信开销大幅降低。在三个数据集上的平均 MSE 比最佳基线 PerFedAvg 降低了9.8%,平均 MAE 降低6.7%。同时,FUELS 的通信参数量比基线方法平均减少了94%。
本文还可视化了各方法的预测值曲线和 MSE 的累积分布函数(CDF)曲线。结果显示 FUELS 在各数据集的波动序列上,都能给出更加准确的预测。此外,FUELS 的 MSE 分布更集中在较低的区域,如在 Net 数据集上,87%的客户端 MSE 低于1.5,而 FedRep 等方法的比例仅为72%~81%。
本文进一步分析了各方法在不同通信成本下的性能变化趋势。结果发现,在相同MSE水平下 FUELS 的通信开销显著低于其他个性化联邦学习方法,体现出其出色的通信效率。
3. 不同组件对FUELS的影响为了验证 FUELS 不同组件的有效性,本文设计了一系列消融实验。
首先,分别移除了客户端内和客户端间对比任务,发现性能都有所下降,表明两类对比任务可从不同角度改进本地训练。其次,用拼接方式生成原型,发现性能略有下降,且通信量大幅上升,说明周期性感知原型的优越性。然后去除了动态过滤模块,性能出现明显下滑,表明该机制可有效挑选出真正的负样本。
此外,本文还考察了一些关键参数的影响,包括相似度阈值 、温度系数 以及损失权重 。结果表明, 取 JSD 值的中位数, 取0.02, 取5时,FUELS 能取得较好的性能。
最后,实验对比了原型与原始数据的相关性,并可视化了过滤矩阵,进一步验证了语义对齐机制的有效性。同时,本文还将 FUELS 与差分隐私等机制结合,在隐私保护的同时保持了较好的性能表现。
总结FUELS 通过语义相似性自适应对齐正负样本对,利用客户端内和客户端间的对比任务,将时空异质性引入表示空间,同时采用周期性感知原型作为通信载体,在大幅降低通信开销的同时实现了显著的性能提升。该方法在理论和实验上都得到了充分的验证,为个性化联邦学习在时空预测等领域的应用提供了新的思路。