郑刚教授:导管消融术减轻房颤负荷和改善房颤患者预后

小雁的记事本 2024-04-01 01:18:38

郑 刚

泰达国际心血管病医院,天津 300457

心房颤动(AF)影响全球超过4600万人,从1990~2010年,其发病率和相关死亡率急剧上升[1]。随着持续心脏监测的出现,临床医生和研究人员现在能够量化患者和人群中房颤的真实负担。然而,房颤负担相关数据的临床应用仍不清楚。本文将总结当前关于房颤负担与心血管结果之间关系的数据,以及导管消融(CA)在减少房颤负担从而改善心血管结果方面的有效性。

01房颤负担的定义

从历史上看,房颤是根据心律失常个体发作的持续时间分类。公认的定义将阵发性房颤定义为持续时间<7天的发作,将持续性房颤划分为持续时间>7天的事件,将长期持续性房颤动划分为持续时间>1年的持续性房颤。永久性房颤是指患者和临床医生决定停止尝试恢复窦性心律的房颤[2]。尽管这些分类在临床实践中可能是有用的描述符,但它们缺乏鉴别能力。他们依赖患者的主观症状报告,用于推断房颤发作的持续性和持续时间,这往往会导致分类错误[3]。此外,即使在同一临床房颤分类的患者中,用于房颤的时间(房颤负担)也可能有很大差异,导致频繁短发作的“阵发性”患者可能比罕见长发作的“持续性”患者花费更多的房颤时间。因此,房颤负荷测量可能会在临床分类之间明显重叠[3-4]。

随着持续监测心律的设备的出现,人们提出了替代分类。尽管房颤负担通常定义为通过连续节律监测检测到的房颤时间百分比,但其他分类包括最长房颤发作的持续时间和一段时间内的房颤发作次数。此外,房颤可分为临床房颤(典型的症状性和持续性房颤)、亚临床房颤(SCAF)(在没有症状的情况下通过心电图检测到的房颤)和设备检测到的心房颤动(DDAF)(在心脏植入式电子设备[CIED]上检测到的无症状房颤)[5]。通过间歇性心脏监测确定房颤负担取决于监测的持续时间。在CIRCA-DOSE试验的事后分析中,研究人员比较了不同持续时间的无创监测对确定消融术后房颤负担的有效性。较短的监测强度(24/48小时心电图监测器)对检测房颤复发的敏感性较低,并在检测到房颤时高估了患者的房颤负担。与连续植入式心脏监测仪相比,准确测定房颤负荷的无创监测的最佳持续时间为28天,通常每年使用4个7天监测仪或2个14天监测仪[6]。

02房颤的心血管后果

2.1血栓栓塞风险

房颤负担与卒中风险之间的关系在文献中一直存在争议。2019年美国心脏协会指南建议根据个人的CHA2DS2-VASc评分,在不考虑房颤类型或模式的情况下,口服抗凝药物以降低房颤患者的卒中风险[7]。血栓栓塞风险的计算中省略了房颤负担,其依据是患者特征引起的风险远远超过房颤模式引起的风险[8]。这得到了早期研究的支持,这些研究在将阵发性房颤患者与持续性或永久性房颤患者进行比较时,未能显示卒中风险的显著差异[9-11]。尽管有1个以上卒中风险因素的患者的房颤数量或其模式可能不会改变抗凝阈值,但大量证据确实表明,房颤持续时间越长,卒中风险越大。对几项大型随机对照试验的事后分析发现,与阵发性房颤患者相比,持续性或永久性房颤抗凝患者发生卒中和全身血栓栓塞的风险明显更高[12-15]。

此外,ACTIVE-A和AVERROES试验的分析在未接受口服抗凝治疗的个体中,随着更持久形式的房颤,卒中风险增加(调整后的HR=1.83;永久性房颤与阵发性房颤的P<0.001;调整后的HR=1.44;持续性房颤和阵发性房颤为P=0.02)[16]。研究尚未显示与卒中风险显著增加相关的房颤负担的最低阈值一致。在临床房颤患者中,即使在调整CHA2DS2-VASc评分后,更大的卒中风险也与房颤持续时间百分比>11%和持续房颤发作持续时间>24小时有关[17-18]。来自DDAF患者的数据也表明,DDAF负担增加与卒中风险之间存在类似的关联[19-21]。Kaplan等[22]证明了CHA2DS2-VASc评分与卒中风险之间的关系是由房颤负荷介导的;与具有相同CHA2DS2-VASc评分且房颤负荷较低的患者相比,房颤负荷较大的患者发生卒中的风险更大。Tiver等[23]设计了一种风险计算器,将房颤负担纳入CHA2DS2-VASc评分,并发现房颤负担可能有助于确定CHA2DS2-WASc评分中等的患者的抗凝作用。

2.2 死亡率和住院治疗

越来越多的证据表明,房颤负担会增加房颤其他心血管并发症的风险。对39 710名临床诊断为房颤的患者的CIED试验数据的分析表明,每日房颤负担的增加与全因死亡率、全因住院和心血管住院之间存在显著关联[18]。房颤负荷为0%的患者1年时全因死亡率为8.5%,房颤负荷在0%~5%时为8.9%, 房颤负担>5%时为10.9%(P<0.001)。在比较不同口服抗凝剂有效性的几项随机对照试验的事后分析中,也证明了房颤负担与死亡率之间的相关性。ENGAGEAF-TIMI 48试验的数据显示,与持续性房颤(调整后HR=0.73)和永久性房颤患者(调整后HR=0.78)相比,阵发性房颤患者的全因死亡率较低[13]。在ROCKET-AF试验中,阵发性房颤患者的全因死亡率低于持续性房颤患者(调整后的HR=0.79)[12]。因此,房颤负担可能是死亡率的一个重要风险因素。

最近,Park等[24]报道,与低负荷或无负荷SCAF患者相比,高负荷SCAF(6个月内24小时的SCAF)患者发展为临床房颤、缺血性卒中、心肌梗死、心力衰竭(HF)住院和心脏死亡的综合结果风险明显更高。房颤的进展,以房颤负担每周的增加来衡量,也与死亡率的增加有关[25]。

2.3 心力衰竭结果

射血分数保持或降低心力衰竭(HFrEF/HFpEF)的房颤患者的发病率和死亡率高于单独患有这两种疾病的患者[26-27]。Tailandier等[28]证明,与心力衰竭(HF)和阵发性或持续性房颤患者相比,HF和永久性房颤患者的全因死亡率和再入院率增加。对39 000多名非永久性房颤患者的CIED数据的回顾性分析表明,更大的房颤负担(以房颤时间的百分比计)与新发HF和死亡的风险显著增加有关[29]。在现有HF患者中,更大的房颤负担与HF和死亡导致的住院风险显著增加有关。对ASSERT试验的事后分析显示,与未进展房颤的患者相比,DDAF进展至>24小时发作或进展为临床房颤患者的HF住院率明显更高[30]。总之,这些数据表明房颤负担是HF发展和住院的一个重要风险因素。

03导管消融可改善患者结局

考虑到房颤负担加重的显著不良反应,房颤患者可能受益于减轻负担和防止房颤进展的治疗。AFFIRM试验在比较房颤患者的心率控制和药物心律控制策略时,显示死亡率无差异[31]。然而,对AFFIRM数据的治疗分析显示,随访时窦性心律的存在与死亡风险的降低有关(调整后HR=0.53)[32]。最近,EAST-AFNET 4试验显示受益于前12个月内最近诊断为房颤的患者的早期节律控制策略。与常规护理相比,33名在EAST-AFNET 4试验中随机接受早期节律控制的患者的卒中率、HF或急性冠状动脉综合征(ACS)恶化住院率以及心血管原因死亡率较低。重要的是,早期心律控制治疗的有效性是由随访中窦性心律的存在所介导的[34]。尽管EAST-AFNET 4试验的大部分心律控制是通过抗心律失常药物(AAD)治疗实现的,但在试验中,消融术也是减少房颤负担和维持窦性心律的重要干预措施。CIRCA-DOSE试验专注于AAD治疗难治的阵发性房颤,与基线相比,消融术使房颤负担减少了>98%[35]。多项其他试验表明,与药物治疗(心率和/或节律控制)相比,消融术显著降低了房颤负担[36-38]。还有几项一线消融术的临床试验表明,与不良安全事件发生率相似的AAD治疗相比,消融术后心律失常复发率显著降低[39-40]。此外,消融术已被证明比AAD治疗更有效地延缓从阵发性房颤到持续性房颤的进展[41]。房颤的消融术是一种很有前途的方法,用于建立和维持房颤患者的窦性心律,以降低房颤相关的发病率和死亡率,而不会产生与AAD治疗相关的显著不良反应。

3.1 提高生活质量

美国心脏协会指南建议,尽管接受了AAD治疗,但仍继续出现房颤症状的患者或对AAD治疗不耐受的患者使用消融术[2]。许多临床试验已经证明消融术在AADs难治性房颤患者中具有优越性[42]。这一建议也得到了数据的支持,这些数据表明消融术后症状负担有所改善。在消融术BANA试验中,接受消融术治疗的症状性房颤患者在12个月时的生活质量和症状负担改善明显大于接受心率或节律控制治疗的患者[43]。在CIRCA-DOSE试验中,每日房颤负荷每减少15.8分钟,心房颤动对生活质量的影响评分就会提高1分[44]。几项随机对照试验也表明,与药物治疗相比,接受消融术治疗的房颤和HF患者的生活质量、房颤和HF症状负担以及运动耐受性(通过峰值运动或6分钟步行距离时的最大耗氧量来衡量)有所改善[45-48]。DISCERN AF试验表明,消融术后的每日房颤负荷可预测每日体力活动水平,在每日房颤负担>500分钟的患者中,这一关系显著相反[49]。一项针对症状性房颤患者的前瞻性研究发现,无论消融效果如何,消融术都与生活质量的显著改善有关,定义为30秒的发作不会复发[50]。这些数据支持向主要结果的转变,包括房颤负担和患者报告的症状,以衡量消融成功率,而不是复发的标准定义[51]。

3.2 减少医疗保健的使用

消融术也被证明可以减少房颤患者的医疗保健使用。成本和医疗保健使用模型表明,与房颤患者的AAD治疗相比,消融术的门诊就诊次数、住院天数和急诊就诊次数显著减少[52-53]。Friedman等[54]发现,与消融前一年相比,即使考虑到重复消融的成本,消融后18个月与房颤相关的医疗保健成本也显著降低。阵发性和持续性房颤患者在消融后的医疗保健支出在消融前显著减少,尽管持续性房颤动患者的绝对成本更高[54]。对CIRCA-DOSE试验的事后分析显示,与消融前一年相比,消融术后一年的医疗保健使用量显著降低[55]。进一步的分析表明,房颤发作持续时间为≤1小时或房颤负担≤0.1%的患者的医疗保健使用率与无房颤复发的患者相当[56]。相反,房颤发作持续时间>1小时或房颤负担>0.1%的患者的医疗保健使用率明显更高。

3.3 对血栓栓塞风险的影响

关于消融术对血栓栓塞风险影响的数据喜忧参半。鉴于直接作用口服抗凝剂预防卒中的有效性,识别消融术是否能降低卒中风险可能特别具有挑战性。一项大型回顾性分析显示,即使在调整CHA2DS2-VASc评分后,接受消融术治疗的房颤患者的卒中风险与未接受消融术的患者相当(1.4%对1.4%),且显著低于未接受消融术治疗(1.4%对3.5%;P<0.001)[57]。然而,对3 500多名接受消融术或药物治疗的患者的分析发现口服抗凝药物使用时间依赖性调整后的组[58]。关于房颤负担如何介导消融术对卒中风险的影响的数据有限。尽管在CABANA试验中。与药物治疗相比,接受消融术治疗的患者的房颤负担减轻了更多,但两组之间的卒中风险没有差异[59]。相反,EAST-AFNET 4试验发现接受早期节律控制治疗的患者的卒中发生率较低(2.9%对4.4%)[33]。尽管EASTAFNET 4试验不是一项消融试验,但它确实提出了一种假设,即早期引入节律控制(AAD或消融术)可以通过减少患者的房颤负担,降低随访中卒中的风险。

3.4 死亡率和HF结果的改善

在接受消融术治疗的房颤患者的普通人群中,死亡率益处尚未得到证实。2012年,一项对32项随机对照试验的Cochrane综述显示,接受消融术治疗患者明显更有可能保持正常窦性心律;然而,与药物治疗相比,消融术的死亡率没有显著差异[60]。这些研究的随访时间可能不够长,无法观察到生存率的差异。最近,CABANA试验显示,与接受AAD治疗的患者相比,接受消融术治疗的症状性房颤患者的主要终点(死亡、致残性卒中、严重出血或心脏骤停的复合终点)没有显著差异。在高不良后果风险的患者中,如HFrEF和房颤患者,消融术优于药物治疗。AATAC试验将消融术与胺碘酮治疗HFrEF患者持续性房颤进行了比较。与胺碘酮治疗相比,消融术治疗可更好地维持窦性心律,减少计划外住院,降低死亡率[47]。同样,CASTLE-AF试验将消融术与药物治疗HFrEF患者阵发性或持续性房颤进行了比较。消融术治疗与全因死亡率(HR=0.53)和HF恶化住院风险的降低相关(HR=0.56)[61]。

尽管CASTLE-AF试验没有观察到房颤复发与主要转归(全因死亡率和HF恶化住院的综合因素)之间的关系,但房颤负担与这些转归之间存在明显的关系[36,62]。在整个研究队列中,房颤负担>5%的患者在随访1年和2年时全因死亡率或HF住院的几率更高(HR=3.34,房颤负担<5%比5%~80%,HR=2.51;房颤负荷<5%比>80%,1年)。值得注意的是,消融术可以减轻长期房颤负担,但药物治疗不能减轻。在接受消融术治疗的患者中,6个月时房颤负担<50%的患者主要转归风险(HR=0.33)和全因死亡率(HR=0.23)显著降低,HF住院率也显著降低(HR=0.43)。这些数据表明,消融术后的房颤负担是一个重要的结果,与房颤复发相比具有更大的临床相关性。

04未来方向

关于房颤负担、心血管结果和消融术治疗之间关系的临床应用,仍有许多问题。随着植入和可穿戴心脏监测设备的进步,房颤的检测得到改善,提供者在确定亚临床房颤的适当治疗方面面临着重大挑战。因此,需要达成共识,以确定房颤负担的阈值,从而保证抗凝治疗。为了将房颤负担纳入临床决策,还需要对房颤负担进行标准定义和方法,因为研究人员在不同的情况下使用不同的定义。例如,大多数关于卒中预防的研究都集中在房颤的最长持续时间上,而关于其他结果(包括住院或死亡率)的研究往往集中在房颤动的时间百分比上。临床医生可以使用房颤负担的标准化定义来选择从消融术中受益的患者,因为消融前房颤发作的持续时间比房颤类型更能预测消融成功[35]。未来的研究应该研究减缓房颤进展并防止与更高的房颤负担相关的负面结果的疗法。具体而言,消融术改善预后的最佳时机尚不清楚,尤其是对于年轻的房颤患者,预防进展将大大减少其累积的终身负担。

几项研究表明,随着消融时间的延长或房颤负担的增加,复发率更高[35,63],而其他研究则表明,无论消融术或房颤负担何时发生,复发率都相当消融时间[64-65]。此外,还需要进一步的工作来扩大女性和非白人患者群体获得减少房颤负担的策略的机会;先前的研究表明,尽管房颤负担和不良事件发生率相似地降低,但这些人群的消融术发生率较低[66-69]。最后,需要对消融后房颤复发进行另一种定义,因为目前对复发的定义(任何房颤发作>30秒)与不良临床结果无关[70]。为了更好地评估消融的临床成功率,应将复发定义为房颤的负担,该负担与较低的生活质量、较高的医疗保健使用以及较高的住院或死亡风险有关。

05小结

随着房性心律失常监测技术的进步,现在有充分的证据表明房颤负担加重与心血管预后不良之间存在关联。消融术已被证明可以通过减轻HF和房颤患者的房颤负担和建立窦性心律来减轻房颤的负面影响。非常需要概述这些数据对房颤诊断和管理的临床意义的共识指南。

专家简介

郑刚教授:现任泰达国际心血管病医院特聘专家,济兴医院副院长。中国高血压联盟理事,中国心力衰竭学会委员,中国老年医学会高血压分会天津工作组副组长、中国医疗保健国际交流促进会高血压分会委员。天津医学会心血管病专业委员会委员,天津医学会老年病专业委员会常委。天津市医师协会高血压专业委员会常委,天津市医师协会老年病专业委员会委员,天津市医师协会心力衰竭专业委员,天津市医师协会心血管内科医师分会双心专业委员会委员。天津市心脏学会理事、天津市心律学会第一届委员会委员,天津市房颤中心联盟常委。天津市医药学专家协会第一届心血管专业委员会委员,天津市药理学会临床心血管药理专业委员会常委。天津市中西医结合学会心血管疾病专业委员会常委。《中华老年心脑血管病杂志》编委,《中 华临床 医师杂志》(电子版)特邀审稿专家,《中华诊断学电子杂志》审稿专家,《华夏医学》杂志副主编,《中国心血管杂志》常务编委,《中国心血管病研究》杂志第四届编委,《世界临床药物》杂志编委、《医学综述》杂志会编委、《中国医药导报》杂志编委、《中国现代医生》杂志编委、《心血管外科杂志(电子版)》审稿专家。本人在专业期刊和心血管网发表文章979篇其中第一作者790篇,参加著书11部。

获天津市2005年度“五一劳动奖章和奖状” 和 “天津市卫生行业第二届人民满意的好医生”称号。

参考文献

1. Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014;129:837–847.

2. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation. J Am Coll Cardiol. 2014;64:e1–e76.

3. Andrade JG, Yao RRJ, Deyell MW, et al. Clinical assessment of AF pattern is poorly correlated with AF burden and post ablation outcomes: a CIRCADOSE sub-study. J Electrocardiol. 2020;60:159– 164.

4. Charitos EI, Pürerfellner H, Glotzer TV, Ziegler PD. Clinicalifications of atrial fibrillation poorly reflect its temporal persistence. J Am Coll Cardiol. 2014;63:2840–2848.

5. Flaker GC, Belew K, Beckman K, et al. Asymptomatic atrial fibrillation: demographic features and prognostic information from the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Am Heart J. 2005;149: 657–663. 6. Aguilar M, Macle L, Deyell MW, et al. Influence of monitoring strategy on assessment of ablation success and postablation atrial fibrillation burden assessment: implications for practice and clinical trial design. Circulation. 2022;145:21–30.

7. January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ ACC/HRS guideline for the management of patients with atrial fibrillation. J Am Coll Cardiol. 2019;74:104–132.

8. Chen LY, Chung MK, Allen LA, et al. Atrial fibrillation burden: moving beyond atrial fibrillation as a binary entity: a scientific statement from the American Heart Association. Circulation. 2018;137:e623–e644.

9. Hart RG, Pearce LA, Rothbart RM, McAnulty JH, Asinger RW, Halperin JL. Stroke with intermittent atrial fibrillation: incidence and predictors during aspirin therapy. J Am Coll Cardiol. 2000;35:183– 187.

10. Hohnloser SH, Pajitnev D, Pogue J, et al. Incidence of stroke in paroxysmal versus sustained atrial fibrillation in patients taking oral anticoagulation or combined antiplatelet therapy. J Am Coll Cardiol. 2007;50:2156–2161.

11. Disertori M, Franzosi MG, Barlera S, et al. Thromboembolic event rate in paroxysmal and persistent atrial fibrillation: data from the GISSIAF trial. BMC Cardiovasc Disord. 2013;13:28–36.

12. Steinberg BA, Hellkamp AS, Lokhnygina Y, et al. Higher risk of death and stroke in patients with persistent vs. paroxysmal atrial fibrillation: results from the ROCKET-AF Trial. Eur Heart J. 2015;36:288–296.

13. Link MS, Giugliano RP, Ruff CT, et al. Stroke and mortality risk in patients with various patterns of atrial fibrillation: results from the ENGAGE AFTIMI 48 trial (Effective Anticoagulation With Factor Xa Next Generation in Atrial Fibrillation– Thrombolysis in Myocardial Infarction 48). Circ Arrhythm Electrophysiol. 2017;10:e004267.

14. Al-Khatib SM, Thomas L, Wallentin L, et al. Outcomes of apixaban vs. warfarin by type and duration of atrial fibrillation: results from the ARISTOTLE trial. Eur Heart J. 2013;34:2464– 2471.

15. Lip GYH, Frison L, Grind M. for the SPORTIF Investigators. Stroke event rates in anticoagulated patients with paroxysmal atrial fibrillation. J Intern Med. 2008;264:50–61.

16. Vanassche T, Lauw MN, Eikelboom JW, et al. Risk of ischaemic stroke according to pattern of atrial fibrillation: analysis of 6563 aspirin-treated patients in ACTIVE-A and AVERROES. Eur Heart J. 2015;36:281–288.

17. Go AS, Reynolds K, Yang J, et al. Association of burden of atrial fibrillation with risk of ischemic stroke in adults with paroxysmal atrial fibrillation: the KP-RHYTHM study. JAMA Cardiol. 2018;3: 601–608.

18. Chew DS, Li Z, Steinberg BA, et al. Arrhythmic burden and the risk of cardiovascular outcomes in patients with paroxysmal atrial fibrillation and cardiac implanted electronic devices. Circ Arrhythm Electrophysiol. 2022;15:e010304.

19. Glotzer TV, Daoud EG, Wyse DG, et al. The relationship between daily atrial tachyarrhythmia burden from implantable device diagnostics and stroke risk: the TRENDS study. Circ Arrhythm Electrophysiol. 2009;2:474–480.

20. Van Gelder IC, Healey JS, Crijns HJGM, et al. Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in ASSERT. Eur Heart J. 2017;38:1339–1344.

21. Boriani G, Glotzer TV, Santini M, et al. Devicedetected atrial fibrillation and risk for stroke: an analysis of >10 000 patients from the SOS AFproject (Stroke Prevention Strategies Based on Atrial Fibrillation Information From Implanted Devices). Eur Heart J. 2014;35:508–516.

22. Kaplan RM, Koehler J, Ziegler PD, Sarkar S, Zweibel S, Passman RS. Stroke risk as a function of atrial fibrillation duration and CHA2DS2-VASc score. Circulation. 2019;140:1639–1646.

23. Tiver KD, Quah J, Lahiri A, Ganesan AN, McGavigan AD. Atrial fibrillation burden: an update—the need for a CHA2DS2-VASc-AFBurden score. EP Eur. 2021;23:665–673.

24. Park YJ, Kim JS, Park K-M, On YK, Park S-J. Subclinical atrial fibrillation burden and adverse clinical outcomes in patients with permanent pacemakers. Stroke. 2021;52:1299–1308.

25. Piccini JP, Passman R, Turakhia M, Connolly AT, Nabutovsky Y, Varma N. Atrial fibrillation burden, progression, and the risk of death: a case-crossover analysis in patients with cardiac implantable electronic devices. EP Eur. 2019;21:404–413.

26. Santhanakrishnan R, Wang N, Larson MG, et al. Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction. Circulation. 2016;133:484–492.

27. Zareba W, Steinberg JS, McNitt S, Daubert JP, Piotrowicz K, Moss AJ. Implantable cardioverterdefibrillator therapy and risk of congestive heart failure or death in MADIT II patients with atrial fibrillation. Heart Rhythm. 2006;3:631–637.

28. Taillandier S, Brunet Bernard A, Lallemand B, et al. Prognosis in patients hospitalized with permanent and nonpermanent atrial fibrillation in heart failure. Am J Cardiol. 2014;113:1189–1195.

29. Steinberg BA, Li Z, O’Brien EC, et al. Atrial fibrillation burden and heart failure: data from 39, 710 individuals with cardiac implanted electronic devices. Heart Rhythm. 2021;18:709–716.

30. Wong JA, Conen D, Van Gelder IC, et al. Progression of device-detected subclinical atrial fibrillation and the risk of heart failure. J Am Coll Cardiol. 2018;71:2603–2611.

31. Wyse D, Waldo A, DiMarco J, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;347:1825–1833.

32. Corley SD, Epstein AE, DiMarco JP, et al. Relationships between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) study. Circulation. 2004;109:1509–1513.

33. Kirchhof P, Camm AJ, Goette A, et al. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med. 2020;383:1305–1316.

34. Eckardt L, Sehner S, Suling A, et al. Attaining sinus rhythm mediates improved outcome with early rhythm control therapy of atrial fibrillation: the EAST-AFNET 4 trial. Eur Heart J. 2022;43: 4127–4144.

35. Andrade JG, Deyell MW, Verma A, et al. Association of atrial fibrillation episode duration with arrhythmia recurrence following ablation: a secondary analysis of a randomized clinical trial. JAMA Netw Open. 2020;3:e208748.

36. Brachmann J, Sohns C, Andresen D, et al. Atrial fibrillation burden and clinical outcomes in heart failure. J Am Coll Cardiol EP. 2021;7:594– 603.

37. Poole JE, Bahnson TD, Monahan KH, et al. Recurrence of atrial fibrillation after catheter ablation or antiarrhythmic drug therapy in the CABANA trial. J Am Coll Cardiol. 2020;75:3105– 3118.

38. Blomstr?m-Lundqvist C, Gizurarson S, Schwieler J, et al. Effect of catheter ablation vs antiarrhythmic medication on quality of life in patients with atrial fibrillation: the CAPTAF randomized clinical trial. JAMA. 2019;321:1059–1068.

39. Kuniss M, Pavlovic N, Velagic V, et al. Cryoballoon ablation vs. antiarrhythmic drugs: firstline therapy for patients with paroxysmal atrial fibrillation. Europace. 2021;23:1033–1041.

40. Andrade JG, Wells GA, Deyell MW, et al. Cryoablation or drug therapy for initial treatment of atrial fibrillation. N Engl J Med. 2021;384:305– 315.

41. Andrade JG, Deyell MW, Macle L, et al. Progression of atrial fibrillation after cryoablation or drug therapy. N Engl J Med. 2023;388:105–116.

42. Calkins H, Reynolds MR, Spector P, et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. Circ Arrhythm Electrophysiol. 2009;2:349–361.

43. Mark DB, Anstrom KJ, Sheng S, et al. Effect of catheter ablation vs medical therapy on quality of life among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA. 2019;321:1275–1285.

44. Samuel M, Khairy P, Champagne J, et al. Association of atrial fibrillation burden with healthrelated quality of life after atrial fibrillation ablation: substudy of the Cryoballoon vs ContactForce Atrial Fibrillation Ablation (CIRCA-DOSE) randomized clinical trial. JAMA Cardiol. 2021;6: 1324–1328.

45. Hunter RJ, Berriman TJ, Diab I, et al. A randomized controlled trial of catheter ablation versus medical treatment of atrial fibrillation in heart failure (the CAMTAF trial). Circ Arrhythm Electrophysiol. 2014;7:31–38.

46. Parkash R, Wells GA, Rouleau J, et al. Randomized ablation-based rhythm-control versus rate-control trial in patients with heart failure and atrial fibrillation: results from the RAFT-AF trial. Circulation. 2022;145:1693–1704.

47. Di Biase L, Mohanty P, Mohanty S, et al. Ablation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: results from the AATAC multicenter randomized trial. Circulation. 2016;133:1637–1644.

48. Jones DG, Haldar SK, Hussain W, et al. A randomized trial to assess catheter ablation versus rate control in the management of persistent atrial fibrillation in heart failure. J Am Coll Cardiol. 2013;61:1894–1903.

49. Proietti R, Birnie D, Ziegler PD, Wells GA, Verma A. Postablation atrial fibrillation burden and patient activity level: insights from the DISCERN AF study. J Am Heart Assoc. 2018;7:e010256.

50. Wokhlu A, Monahan KH, Hodge DO, et al. Long-term quality of life after ablation of atrial fibrillation. J Am Coll Cardiol. 2010;55:2308–2316.

51. Blomstr?m-Lundqvist C, Svedung Wettervik V. Reflections on the usefulness of today’s atrial fibrillation ablation procedure endpoints and patient-reported outcomes. Europace. 2022;24: ii29–ii43.

52. Ladapo JA, David G, Gunnarsson CL, et al. Healthcare utilization and expenditures in patients with atrial fibrillation treated with catheter ablation. J Cardiovasc Electrophysiol. 2012;23:1–8.

53. Reynolds MR, Zimetbaum P, Josephson ME, Ellis E, Danilov T, Cohen DJ. Cost-effectiveness of radiofrequency catheter ablation compared with antiarrhythmic drug therapy for paroxysmal atrial fibrillation. Circ Arrhythm Electrophysiol. 2009;2: 362–369.

54. Friedman DJ, Field ME, Rahman M, et al. Catheter ablation and healthcare utilization and cost among patients with paroxysmal versus persistent atrial fibrillation. Heart Rhythm O2. 2021;2:28–36.

55. Andrade JG, Macle L, Verma A, et al. Quality of life and health care utilization in the CIRCA-DOSE study. J Am Coll Cardiol EP. 2020;6:935–944.

56. Andrade JG, Deyell MW, Macle L, et al. Healthcare utilization and quality of life for atrial fibrillation burden: the CIRCA-DOSE study. Eur Heart J. 2023;44:765–776.

57. Bunch TJ, May HT, Bair TL, et al. Atrial fibrillation ablation patients have long-term stroke rates similar to patients without atrial fibrillation regardless of CHADS2 score. Heart Rhythm. 2013;10:1272–1277.

58. Joza J, Samuel M, Jackevicius CA, et al. Longterm risk of stroke and bleeding post-atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2018;29:1355–1362.

59. Packer DL, Mark DB, Robb RA, et al. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA. 2019;321:1261–1274.

60. Chen HS, Wen JM, Wu SN, Liu JP. Catheter ablation for paroxysmal and persistent atrial fibrillation. Cochrane Database Syst Rev. 2012;4: CD007101.

61. Marrouche NF, Brachmann J, Andresen D, et al. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378:417–427.

62. Brachmann J, Marrouche NF. LBCT02-04 (abstr). Presented at: Heart Rhythm Society Annual Scientific Sessions; May 11, 2018; Boston, MA

63. Chew DS, Black-Maier E, Loring Z, et al. Diagnosis-to-ablation time and recurrence of atrial fibrillation following catheter ablation: a systematic review and meta-analysis of observational studies. Circ Arrhythm Electrophysiol. 2020;13: e008128.

64. Kawaji T, Shizuta S, Yamagami S, et al. Early choice for catheter ablation reduced readmission in management of atrial fibrillation: impact of diagnosis-to-ablation time. Int J Cardiol. 2019;291: 69–76.

65. Strisciuglio T, El Haddad M, Debonnaire P, et al. Paroxysmal atrial fibrillation with high vs. low arrhythmia burden: atrial remodelling and ablation outcome. Europace. 2020;22:1189– 1196.

66. Patel N, Deshmukh A, Thakkar B, et al. Gender, race, and health insurance status in patients undergoing catheter ablation for atrial fibrillation. Am J Cardiol. 2016;117:1117–1126.

67. Russo AM, Zeitler EP, Giczewska A, et al. Association between sex and treatment outcomes of atrial fibrillation ablation versus drug therapy: results from the CABANA trial. Circulation. 2021;143:661–672.

68. Deng H, Shantsila A, Guo P, et al. Sex-related risks of recurrence of atrial fibrillation after ablation: insights from the Guangzhou Atrial Fibrillation Ablation Registry. Arch Cardiovasc Dis. 2019;112:171–179.

69. Thomas KL, Al-Khalidi HR, Silverstein AP, et al. Ablation versus drug therapy for atrial fibrillation in racial and ethnic minorities. J Am Coll Cardiol. 2021;78:126–138.

70. Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14:e275–e444.

3 阅读:699

小雁的记事本

简介:感谢大家的关注