正交试验设计(Orthogonal experimental design)是研究多因素多水平的一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是一种基于正交表的、高效率、快速、经济的试验。
什么是因素(Factor):在一项试验中,凡欲考察的变量称为因素(变量)
什么是水平(位级)(Level):在试验范围内,因素被考察的值称为水平(变量的取值)
正交表的构成:
行数(Runs):正交表中的行的个数,即试验的次数。
因素数(Factors):正交表中列的个数。
水平数(Levels):任何单个因素能够取得的值的最大个数。正交表中的包含的值为从0到数“水平数-1”或从1到“水平数”
正交表的表示形式: L行数(水平数因素数)
正交表的两个特点:
正交表必须满足这两个特点,有一条不满足,就不是正交表。
1)每列中不同数字出现的次数相等。例如,在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。这一特点表明每个因素的每个水平与其它因素的每个水平参与试验的几率是完全相同的,从而保证了在各个水平中最大限度地排除了其它因素水平的干扰,能有效地比较试验结果并找出最优的试验条件。
2)在任意两列其横向组成的数字对中,每种数字对出现的次数相等。即“均匀分散性,整齐可比”。通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。
正交表的构成:
行数(Runs):正交表中的行的个数,即试验的次数。
因素数(Factors):正交表中列的个数。
水平数(Levels):任何单个因素能够取得的值的最大个数。正交表中的包含的值为从0到数“水平数-1”或从1到“水平数”
正交表的表示形式: L行数(水平数因素数)