使用Accelerate库在多GPU上进行LLM推理

deephub 2023-11-29 10:05:15

大型语言模型(llm)已经彻底改变了自然语言处理领域。随着这些模型在规模和复杂性上的增长,推理的计算需求也显著增加。为了应对这一挑战利用多个gpu变得至关重要。

所以本文将在多个gpu上并行执行推理,主要包括:Accelerate库介绍,简单的方法与工作代码示例和使用多个gpu的性能基准测试。

本文将使用多个3090将llama2-7b的推理扩展在多个GPU上

基本示例

我们首先介绍一个简单的示例来演示使用Accelerate进行多gpu“消息传递”。

from accelerate import Acceleratorfrom accelerate.utils import gather_objectaccelerator = Accelerator()# each GPU creates a stringmessage=[ f"Hello this is GPU {accelerator.process_index}" ] # collect the messages from all GPUsmessages=gather_object(message)# output the messages only on the main process with accelerator.print() accelerator.print(messages)

输出如下:

['Hello this is GPU 0',  'Hello this is GPU 1',  'Hello this is GPU 2',  'Hello this is GPU 3',  'Hello this is GPU 4']

多GPU推理

下面是一个简单的、非批处理的推理方法。代码很简单,因为Accelerate库已经帮我们做了很多工作,我们直接使用就可以:

from accelerate import Acceleratorfrom accelerate.utils import gather_objectfrom transformers import AutoModelForCausalLM, AutoTokenizerfrom statistics import meanimport torch, time, jsonaccelerator = Accelerator()# 10*10 Prompts. Source: https://www.penguin.co.uk/articles/2022/04/best-first-lines-in-booksprompts_all=[    "The King is dead. Long live the Queen.",    "Once there were four children whose names were Peter, Susan, Edmund, and Lucy.",    "The story so far: in the beginning, the universe was created.",    "It was a bright cold day in April, and the clocks were striking thirteen.",    "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.",    "The sweat wis lashing oafay Sick Boy; he wis trembling.",    "124 was spiteful. Full of Baby's venom.",    "As Gregor Samsa awoke one morning from uneasy dreams he found himself transformed in his bed into a gigantic insect.",    "I write this sitting in the kitchen sink.",    "We were somewhere around Barstow on the edge of the desert when the drugs began to take hold.",] * 10# load a base model and tokenizermodel_path="models/llama2-7b"model = AutoModelForCausalLM.from_pretrained(    model_path,        device_map={"": accelerator.process_index},    torch_dtype=torch.bfloat16,)tokenizer = AutoTokenizer.from_pretrained(model_path)   # sync GPUs and start the timeraccelerator.wait_for_everyone()start=time.time()# divide the prompt list onto the available GPUs with accelerator.split_between_processes(prompts_all) as prompts:    # store output of generations in dict    results=dict(outputs=[], num_tokens=0)    # have each GPU do inference, prompt by prompt    for prompt in prompts:        prompt_tokenized=tokenizer(prompt, return_tensors="pt").to("cuda")        output_tokenized = model.generate(**prompt_tokenized, max_new_tokens=100)[0]        # remove prompt from output        output_tokenized=output_tokenized[len(prompt_tokenized["input_ids"][0]):]        # store outputs and number of tokens in result{}        results["outputs"].append( tokenizer.decode(output_tokenized) )        results["num_tokens"] += len(output_tokenized)    results=[ results ] # transform to list, otherwise gather_object() will not collect correctly# collect results from all the GPUsresults_gathered=gather_object(results)if accelerator.is_main_process:    timediff=time.time()-start    num_tokens=sum([r["num_tokens"] for r in results_gathered ])    print(f"tokens/sec: {num_tokens//timediff}, time {timediff}, total tokens {num_tokens}, total prompts {len(prompts_all)}")

使用多个gpu会导致一些通信开销:性能在4个gpu时呈线性增长,然后在这种特定设置中趋于稳定。当然这里的性能取决于许多参数,如模型大小和量化、提示长度、生成的令牌数量和采样策略,所以我们只讨论一般的情况

1 GPU: 44个token /秒,时间:225.5s

2 gpu: 88个token /秒,时间:112.9s

3 gpu: 128个token /秒,时间:77.6s

4 gpu: 137个token /秒,时间:72.7s

5 gpu: 119个token /秒,时间:83.8s

在多GPU上进行批处理推理

现实世界中,我们可以使用批处理推理来加快速度。这会减少GPU之间的通讯,加快推理速度。我们只需要增加prepare_prompts函数将一批数据而不是单条数据输入到模型即可:

from accelerate import Acceleratorfrom accelerate.utils import gather_objectfrom transformers import AutoModelForCausalLM, AutoTokenizerfrom statistics import meanimport torch, time, jsonaccelerator = Accelerator()def write_pretty_json(file_path, data):    import json    with open(file_path, "w") as write_file:        json.dump(data, write_file, indent=4)# 10*10 Prompts. Source: https://www.penguin.co.uk/articles/2022/04/best-first-lines-in-booksprompts_all=[    "The King is dead. Long live the Queen.",    "Once there were four children whose names were Peter, Susan, Edmund, and Lucy.",    "The story so far: in the beginning, the universe was created.",    "It was a bright cold day in April, and the clocks were striking thirteen.",    "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.",    "The sweat wis lashing oafay Sick Boy; he wis trembling.",    "124 was spiteful. Full of Baby's venom.",    "As Gregor Samsa awoke one morning from uneasy dreams he found himself transformed in his bed into a gigantic insect.",    "I write this sitting in the kitchen sink.",    "We were somewhere around Barstow on the edge of the desert when the drugs began to take hold.",] * 10# load a base model and tokenizermodel_path="models/llama2-7b"model = AutoModelForCausalLM.from_pretrained(    model_path,        device_map={"": accelerator.process_index},    torch_dtype=torch.bfloat16,)tokenizer = AutoTokenizer.from_pretrained(model_path)   tokenizer.pad_token = tokenizer.eos_token# batch, left pad (for inference), and tokenizedef prepare_prompts(prompts, tokenizer, batch_size=16):    batches=[prompts[i:i + batch_size] for i in range(0, len(prompts), batch_size)]      batches_tok=[]    tokenizer.padding_side="left"        for prompt_batch in batches:        batches_tok.append(            tokenizer(                prompt_batch,                return_tensors="pt",                padding='longest',                truncation=False,                pad_to_multiple_of=8,                add_special_tokens=False).to("cuda")            )    tokenizer.padding_side="right"    return batches_tok# sync GPUs and start the timeraccelerator.wait_for_everyone()     start=time.time()# divide the prompt list onto the available GPUs with accelerator.split_between_processes(prompts_all) as prompts:    results=dict(outputs=[], num_tokens=0)    # have each GPU do inference in batches    prompt_batches=prepare_prompts(prompts, tokenizer, batch_size=16)    for prompts_tokenized in prompt_batches:        outputs_tokenized=model.generate(**prompts_tokenized, max_new_tokens=100)        # remove prompt from gen. tokens        outputs_tokenized=[ tok_out[len(tok_in):]            for tok_in, tok_out in zip(prompts_tokenized["input_ids"], outputs_tokenized) ]        # count and decode gen. tokens        num_tokens=sum([ len(t) for t in outputs_tokenized ])        outputs=tokenizer.batch_decode(outputs_tokenized)        # store in results{} to be gathered by accelerate        results["outputs"].extend(outputs)        results["num_tokens"] += num_tokens    results=[ results ] # transform to list, otherwise gather_object() will not collect correctly# collect results from all the GPUsresults_gathered=gather_object(results)if accelerator.is_main_process:    timediff=time.time()-start    num_tokens=sum([r["num_tokens"] for r in results_gathered ])    print(f"tokens/sec: {num_tokens//timediff}, time elapsed: {timediff}, num_tokens {num_tokens}")

可以看到批处理会大大加快速度。

1 GPU: 520 token /sec,时间:19.2s

2 gpu: 900 token /sec,时间:11.1s

3 gpu: 1205个token /秒,时间:8.2s

4 gpu: 1655 token /sec,时间:6.0s

5 gpu: 1658 token /sec,时间:6.0s

总结

截止到本文为止,llama.cpp,ctransformer还不支持多GPU推理,好像llama.cpp在6月有个多GPU的merge,但是我没看到官方更新,所以这里暂时确定不支持多GPU。如果有小伙伴确认可以支持多GPU请留言。

huggingface的Accelerate包则为我们使用多GPU提供了一个很方便的选择,使用多个GPU推理可以显着提高性能,但gpu之间通信的开销随着gpu数量的增加而显著增加。

https://avoid.overfit.cn/post/8210f640cae0404a88fd1c9028c6aabb

作者:Geronimo

0 阅读:1
deephub

deephub

提供专业的人工智能知识,包括CV NLP 数据挖掘等