C语言用户态函数可观测性

码哥比特课程 2024-04-01 10:52:44
本文不是介绍eBPF相关的用户态Probe的内容,而是如何利用开源C语言库Melon (https://github.com/Water-Melon/Melon) 的函数模板来轻松实现函数的可观测性需求,例如:测量耗时等。 本文主要介绍的是Melon库中的func模块,之所以没有给这个模块起名叫可观测性或者span,原因是这是一个更为通用的模块,不仅限于可观测性的需求。 func模块实现的功能与GCC的constructor和destructor特性十分相似,就是在C语言函数的入口和出口增加用户自定义回调函数,在调用函数时自行调用这些函数。 我们先看一个简单的例子: // a.c#include "mln_func.h"MLN_FUNC(int, abc, (int a, int b), (a, b), { printf("in %s\n", __FUNCTION__); return a + b;})MLN_FUNC(static int, bcd, (int a, int b), (a, b), { printf("in %s\n", __FUNCTION__); return abc(a, b) + abc(a, b);})static void my_entry(const char *file, const char *func, int line){ printf("entry %s %s %d\n", file, func, line);}static void my_exit(const char *file, const char *func, int line){ printf("exit %s %s %d\n", file, func, line);}int main(void){ mln_func_entry_callback_set(my_entry); mln_func_exit_callback_set(my_exit); printf("%d\n", bcd(1, 2)); return 0;}这段代码中,使用MLN_FUNC定义了两个函数,分别为abc和bcd,且在bcd中会调用abc。其实这个模板宏相对比较容易理解,其宏函数参数顺序如下: 返回值类型(涵盖函数作用域,如static)函数名函数形参列表(需要用()扩住)函数实参列表(需要用()扩住)函数体这里唯一有些困惑的是实参列表,这与宏的实现有关。我们以abc为例,简述一下实现原理。 原理:这个宏会定义两个函数,一个名为abc,一个名为__abc。函数体其实对应的是__abc,也就是说__abc才是真正我们期望调用的那个函数,而abc是对__abc的一个封装,会在__abc的调用前后调用自定义回调函数。 而实参列表就是在函数abc中调用__abc时需要给__abc传递的参数,所以这个参数列表其实就是形参列表去掉类型之后的名字和顺序。 这个实参列表无法忽略,是因为__abc不能省略,而__abc不能省略是因为函数体中可能包含return语句,因此我们无法完全隐式地在return前,甚至是在return的表达式计算后真正的返回前调用回调函数。所以必须单独定义成一个函数也就是__abc。 下面我们来编译这个程序: cc -o a a.c -I /path/to/melon/include -L /path/to/melon/lib -lmelon其中/path/to/melon的部分是Melon的安装路径,默认一般是/usr/local/melon。 然后运行一下 ./ain bcdin abcin abc6你会发现回调函数完全没被调用。这不是我们的代码有问题,而是我们并未启用模板功能。模板启用需要编译时存在MLN_FUNC_FLAG的宏定义,我们既可以将它定义在源文件中,也可以在编译时作为命令行参数给出。下面我以后者为例展示: cc -o a a.c -I /path/to/melon/include -L /path/to/melon/lib -lmelon -DMLN_FUNC_FLAG再次运行 ./aentry a.c bcd 10in __bcdentry a.c abc 5in __abcexit a.c abc 5entry a.c abc 5in __abcexit a.c abc 5exit a.c bcd 106可以看到,回调函数都被正常调用了。 利用这个开关宏,我们可以在不修改任何代码的情况下,轻松切换是否需要开启这项功能。 综合示例前面给出的例子比较简单,那么下面就来看一个实现测量函数调用耗时的例子吧。 这里我将给出三个文件: span.h:这是为测量耗时所定义的数据结构和函数声明等内容。span.c:这是为测量耗时定义的相关函数。a.c:这是我们自定义的一些函数以及在main函数中调用这些函数。其中,span.h和span.c可以随意复制粘贴使用,这是一个独立的模块,当然,你还需要先安装好Melon库。 span.h#include #include "mln_array.h"typedef struct mln_span_s { struct timeval begin; struct timeval end; const char *file; const char *func; int line; mln_array_t subspans; struct mln_span_s *parent;} mln_span_t;extern int mln_span_start(void);extern void mln_span_stop(void);extern void mln_span_dump(void);extern void mln_span_release(void);这里定义了一个数据结构mln_span_t,用来存放函数调用的起始和结束时的时间戳,以及函数所在源文件的信息。还包含了这个函数中调用的其他函数的调用时长信息,以及一个指向上一级调用(也就是调用当前函数的函数)信息的指针。 也就是说,当我们的函数执行完毕后,我们遍历这个结构就能拿到完整的调用关系及其调用细节。 span.c#include #include #include "span.h"#include "mln_stack.h"#include "mln_func.h"static mln_stack_t *callstack = NULL;static mln_span_t *root = NULL;static void mln_span_entry(const char *file, const char *func, int line);static void mln_span_exit(const char *file, const char *func, int line);static mln_span_t *mln_span_new(mln_span_t *parent, const char *file, const char *func, int line);static void mln_span_free(mln_span_t *s);static mln_span_t *mln_span_new(mln_span_t *parent, const char *file, const char *func, int line){ mln_span_t *s; struct mln_array_attr attr; if (parent != NULL) { s = (mln_span_t *)mln_array_push(&parent->subspans); } else { s = (mln_span_t *)malloc(sizeof(mln_span_t)); } if (s == NULL) return NULL; memset(&s->begin, 0, sizeof(struct timeval)); memset(&s->end, 0, sizeof(struct timeval)); s->file = file; s->func = func; s->line = line; attr.pool = NULL; attr.pool_alloc = NULL; attr.pool_free = NULL; attr.free = (array_free)mln_span_free; attr.size = sizeof(mln_span_t); attr.nalloc = 7; if (mln_array_init(&s->subspans, &attr) < 0) { if (parent == NULL) free(s); return NULL; } s->parent = parent; return s;}static void mln_span_free(mln_span_t *s){ if (s == NULL) return; mln_array_destroy(&s->subspans); if (s->parent == NULL) free(s);}int mln_span_start(void){ struct mln_stack_attr sattr; mln_func_entry_callback_set(mln_span_entry); mln_func_exit_callback_set(mln_span_exit); sattr.free_handler = NULL; sattr.copy_handler = NULL; if ((callstack = mln_stack_init(&sattr)) == NULL) return -1; return 0;}void mln_span_stop(void){ mln_func_entry_callback_set(NULL); mln_func_exit_callback_set(NULL); mln_stack_destroy(callstack);}void mln_span_release(void){ mln_span_free(root);}static void mln_span_format_dump(mln_span_t *span, int blanks){ int i; mln_span_t *sub; for (i = 0; i < blanks; ++i) printf(" "); printf("| %s at %s:%d takes %lu (us)\n", \ span->func, span->file, span->line, \ (span->end.tv_sec * 1000000 + span->end.tv_usec) - (span->begin.tv_sec * 1000000 + span->begin.tv_usec)); for (i = 0; i < mln_array_nelts(&(span->subspans)); ++i) { sub = ((mln_span_t *)mln_array_elts(&(span->subspans))) + i; mln_span_format_dump(sub, blanks + 2); }}void mln_span_dump(void){ if (root != NULL) mln_span_format_dump(root, 0);}static void mln_span_entry(const char *file, const char *func, int line){ mln_span_t *span; if ((span = mln_span_new(mln_stack_top(callstack), file, func, line)) == NULL) { fprintf(stderr, "new span failed\n"); exit(1); } if (mln_stack_push(callstack, span) < 0) { fprintf(stderr, "push span failed\n"); exit(1); } if (root == NULL) root = span; gettimeofday(&span->begin, NULL);}static void mln_span_exit(const char *file, const char *func, int line){ mln_span_t *span = mln_stack_pop(callstack); if (span == NULL) { fprintf(stderr, "call stack crashed\n"); exit(1); } gettimeofday(&span->end, NULL);}这里就是耗时统计所需要的所有函数定义。利用一个栈数据结构来保证函数的调用关系,然后在函数的入口回调处创建mln_span_t结点记录起始时间和函数信息并入栈,在出口回调处记录结束时间并出栈。 a.c#include "span.h"#include "mln_func.h"MLN_FUNC(int, abc, (int a, int b), (a, b), { return a + b;})MLN_FUNC(static int, bcd, (int a, int b), (a, b), { return abc(a, b) + abc(a, b);})int main(void){ mln_span_start(); bcd(1, 2); mln_span_stop(); mln_span_dump(); mln_span_release(); return 0;}这里还是那个配方,就是调用bcd,然后bcd调用abc。我们这次在main函数中使用span.h中声明的函数。 一起来简单编译一下: cc -o a span.c a.c -I /usr/local/melon/include -L /usr/local/melon/lib -lmelon -DMLN_FUNC_FLAG然后运行一下: ./a| bcd at a.c:8 takes 2 (us) | abc at a.c:4 takes 0 (us) | abc at a.c:4 takes 0 (us)小结Melon (https://github.com/Water-Melon/Melon)的函数模板其实设计之初也是为了可观测性,因为GCC仅支持了constructor和destructor。如果显式地在代码中加入各种跟踪函数调用,就会让整个函数定义看着非常不连贯和杂乱。因此选择了当前的这个使用方式,但也不可避免的引入了看似没什么用途的实参部分。 另外,Melon库支持模块选择性编译,因此函数模版模块可以单独编译成库,换言之,这个模块是完全无操作系统依赖的,单片机的小伙伴们可以随意取用。 感谢阅读!
0 阅读:9

码哥比特课程

简介:感谢大家的关注