1、什么是串扰
串扰是两条信号线之间的耦合、信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。
串扰是信号完整性中最基本的现象之一,在板上走线密度很高时串扰的影响尤其严重。我们知道,线性无缘系统满足叠加定理,如果受害线上有信号的传输,串扰引起的噪声会叠加在受害线上的信号,从而使其信号产生畸变。
串扰,就是指一条线上的能量耦合到其他传输线,它是由不同结构引起的电磁场在同一区域里的相互作用而产生的。串扰在数字电路中非常普遍地存在着:芯片内部、PCB 板、接插件、芯片封装,以及通信电缆中,都可能出现。而且,随着技术的发展,消费者对产品的要求越来越倾向于小而快,在这种情况下,就必须更加注意数字电路系统中的串扰现象。为了避免和减小这些串扰,学习串扰的原理和如何在设计中避免这些现象的发生就显得相当重要。
在多导线系统中,过多的传输线间的耦合或者说串扰,将有两个不利的影响。首先,串扰会改变总线中单根传输线的性能,比如传输线特征阻抗和传输速度等,而这些将会对系统时序和信号完整性问题产生一定的影响;再者,串扰会将噪声感应耦合到其他的传输线上,这将进一步降低信号完整性,导致噪声裕量变小。串扰对系统性能的危害程度在很大程度上取决于数据模式、线间距以及开关速度等方面。在这章里,我们将详细介绍串扰产生的原理,提供建模的方法,以及对串扰在系统性能中的各方面影响进行详细的阐述。
静态网络靠近干扰源一端的串扰称为近端串扰(也称后向串扰),而远离干扰源一端的串扰称为远端串扰(或称前向串扰)。由于产生的原因不同将串扰可分为容性耦合串扰和感性耦合串扰两类。
2、串扰是怎么引起的?
串扰是由电磁耦合引起的,耦合分为容性耦合和感性耦合两种。
串扰是指当信号在传输线上传播时,因电磁耦合对相邻的传输线产生的不期望
的电压噪声。
容性耦合是由于干扰源(Aggressor)上的电压变化在被干扰对象(Victim)上
引起感应电流从而导致的电磁干扰;
而感性耦合则是由于干扰源上的电流变化产生的磁场在被干扰对象上引起感应电压从而导致的电磁干扰。因此,信号通过一导体时会在相邻的导体上引起两类不同的噪声信号:容性耦合信号和感性耦合信号。
感性耦合:
容性耦合:
互感和互容
互感是引起串扰的两个重要因素之一,互感系数 标志了一根驱动传输线通过磁场对另外一根传输线产生感应电流的程度。从本质上来说,如果“受害(Victim)线”和驱动线(侵略线)的距离足够接近,以至于侵略线产生的磁场将受害线包围其中,则在受侵略的传输线上将会产生感应电流,而这个通过磁场耦合产生的电流在电路模型中就通过互感参数来表征。
互感的作用下,将根据驱动线上的电流变化率而在受害线上引起一定的噪声,噪声电压的大小与电流变换率成正比,通常可以由下式计算:
同样可以看到:感应噪声也是正比于信号的变化率,因此互容在高速数字应用中也是非常重要的。
应该指出的是:用来解释噪声耦合机理的公式,上面两个公式仅仅是一种简单的近似,对于串扰的具体计算公式会比较复杂。
电感和电容矩阵
在一个系统中,如果传输线之间发生了严重的耦合,那么前面提出的使用电容和电感组成的简单传输线模型就不再适合分析传输线的电气特征,在这种多导线系统中,我们必须考虑互感和互容来全面评估传输线的电气性能。上面两个描述了反映寄生耦合效应影响传输线系统性能的典型方法。电感矩阵和电容矩阵被通称为传输线矩阵。场仿真器通常用来计算传输线系统中的电感和电容矩阵。
例:两根传输线之间的矩阵
3、串扰引起的噪声
串扰是由于临近两导体之间的互容和互感所引起的。因而在临近传输线上引起的感应噪声的大小和他们之间的互感和互容大小都有关系。
例如,如果一信号进入传输线 1,由于互感 Lm 和互容 Cm 的作用,将在传输线 2 上产生一电流,为了方便起见,我们定义了两个概念:近端串扰和远端串扰。
近端串扰是指在受侵害线上靠近侵害线的驱动端的串扰(有时候也将这个串扰称为后向串扰)。将受侵害线上靠近侵害线接受端方向的串扰称为远端串扰(有时候也称为前向串扰)。由互容引起的电流分别向受侵害线的两个方向流动,而由互感引起的电流从受侵害线的远端流向近端,这是因为互感产生的电流总是与侵害线中的电流相反。所以,从受侵害线近端到远端的串扰电流由很多部分组成。
受侵害线上近端和远端串扰噪声的波形可以从图看出,当一个数字脉冲进入传输线,它的上升沿和下降沿将不断地在受侵害线上感应出噪声,在这里的讨论中,我们假设信号上升沿或者下降沿的变化速度非常快,远远小于传输线延迟。则根据前面的描述,一部分串扰噪声将传向近端,另一部分将传向远端,也就是我们所定义的近端串扰脉冲和远端串扰脉冲。
如图 ,远端串扰脉冲将和侵害线上的信号同步流向终端,而近端串扰脉冲将起始于侵害线上信号变化沿出现时刻,并流向近端。这样,当驱动线上的信号变化沿在时间 t=TD(这里 TD 是信号在传输线上的延迟时间)到达传输线远端时,如果远端存在匹配,那么,侵害信号和远端串扰将在远端被匹配消除。同时,侵害信号的变化沿在被终端匹配消除前产生的最后一部分近端串扰信号将在 t=2TD 时才到达近端,这是因为,这部分信号又要经过整条传输线才能被传回近端。所以,对于一对被终端匹配好的传输线来说,近端串扰起始于 t=0 并且持2TD 的时间,或者说两倍于传输线的电气长度。相反,受侵害线远端接收到的远端串扰起始于 TD,持续时间为数字信号的上升或者下降时间。
串扰噪声的大小和形状很大程度上取决于耦合的大小与端接的情况。
假设信号在传输线上的传输时间为两倍上升时间:
在这里,X是指传输线长度,L和C是指单位长度传输线本身的电感和电容,注意:
如果
(例如,边沿变化率大于两倍的传输线延迟),近端串扰将不能到达其最大振幅,为了正确计算
时的串扰电压,近端串扰只须乘以
即可,而远端串扰不会因为长度变化而改变。需要注意的是:当上升时间小于传输线时延时(长线情况),近端串扰的最大幅值和信号上升时间没有什么关系,而当上升时间大于传输线时延的时候(短线情况),近端串扰的大小和信号上升时间有一定关系。因为这个原因,定义长传输线的标准为传输线的电气时延必须大于信号的 1/2 上升时间(或下降时间),这时可以得到,近端串扰的幅度与线长无关(即前向串扰的饱和),而远端串扰则总是取决于上升
时间和线长。
假设了受侵害线上的终端电阻与传输线完全匹配,消除了不完全匹配的影响。
第一种情况的终端匹配电阻R并不等于受侵害线的传输线阻抗(为了简单起见,在这里假设了侵害线的匹配完全),此种情况下,近端和远端串扰值就必须加上各自的串扰反射电压。所以,在不完全匹配系统中,串扰信号的计算公式为:
在这里, V x 为不完全匹配情况下调整后的近端或远端串扰值,R就是终端匹配电阻, Z o 为传输线特性阻抗。
如果信号的上升或者下降时间小于传输线延迟,那么近端串扰最大幅值与上升时间无关。如果信号的上升或下降时间长于传输线延迟,那么近端串扰的大小与上升时间有关。远端串扰在任何情况下都和信号的上升或者下降时间有关。
5、连接器如何引起串扰
图9.1中举例说明了工作中的电流环的基本互感耦合。电流离开门电路A,经由信号返回路径X流回源端。由于电流路径X、Y和Z相互重叠,路径X的磁场将在信号路径Y和Z上感应出噪声电压。 因为路径Y与路径X的重叠面积大于路径X路径X的重叠面积,所以路径Y上的感应噪声大于路径Z上的感应噪声。事实上,产生互感噪声不需要路径完全重叠,任何两个相邻近的电流环都会相互影响。连接器的引脚之间也会有寄生电容,但在数字电路中,寄生电容引起的串扰要比互感引起的串扰小。
图9.1中举例说明了工作中的电流环的基本互感耦合。电流离开门电路A,经由信号返回路径X流回源端。由于电流路径X、Y和Z相互重叠,路径X的磁场将在信号路径Y和Z上感应出噪声电压。 因为路径Y与路径X的重叠面积大于路径X路径X的重叠面积,所以路径Y上的感应噪声大于路径Z上的感应噪声。事实上,产生互感噪声不需要路径完全重叠,任何两个相邻近的电流环都会相互影响。
因为路径Y与路径X的重叠面积大于路径X路径X的重叠面积,所以路径Y上的感应噪声大于路径Z上的感应噪声。事实上,产生互感噪声不需要路径完全重叠,任何两个相邻近的电流环都会相互影响。
连接器 的引脚之间也会有寄生电容,但在数字电路中,寄生电容引起的串扰要比互感引起的串扰小。现在我们首先重点讨论问题较大的部分:电感。
1、估算串扰
对于图9.1中任意信号引脚之间信号串扰的大小,估算一般需要3个条件。
1、两个电流环之间的互感2、源信号DI/DT的最大变化率3、接收网络的阻抗以及是否为源端或末端端接
考虑到两个环路之间的互感,我们要找出最坏情况下的串扰,因此以下重点考虑两个直接重叠的环路之间的相互影响,如图9.1中的环路X和环路Y。
环路Y内的全部磁能量来自于两个方面:首先是从门电路A流出并沿着信号线传输的电流,其次是沿着地线传输返回信号电流。因此互感公式包括两项,其中的第二项(地线项)大于第一项:
(式1)
其中:
上式中假设连接器是单排的,而且引脚相对较长。即使这些假设不成立,由于对数函数的特性,由上式也很容易得到在一个数量级内精确的结果,这足以准确地判断连接器的串扰特性是否是一个值得注意的问题。如果连接器的特性关系到系统的性能,那么就买一个连接器并测试它的性能。
下面需要讨论的问题是系统中DI/DT的最大值,我们采用式
或式
来估算DI/DT。
最后一个条件涉及到噪声接受电路拓扑结构。图9.2给出了选择的方案:第一种情况,驱动器紧靠着连接器连接,这里“紧靠”的意思是驱动器到连接器的距离在一个上升沿的电气长度之内。第二种情况,涵盖了其他所有的结构形式,包括源端端接。
在第二种情况对应的结构中,耦合噪声在两个方向上各分一半。在第一种情况下,耦合进的噪声迅速在低阻抗驱动端反射,使接收端的耦合噪声加倍。
下面的公式给出了由于来自门电路A的单个阶跃输入,环路Y上感应出的噪声脉冲的高度。该脉冲的持续时间与输入脉冲的上升沿时间相当。
减缓驱动信号的上升沿时间可以直接减少串扰。如图9.3所示,在连接器的源端并联电容,可以减小驱动信号的上升时间。如果在接收端放置电容,只会使驱动端信号跳变时流过连接器的冲击电流增加,使情况变得更糟。
2、如何通过接地改变返回电流路径
下面给出了连接器特性的5个准则,结合式1,可以帮助估算连接器不同的接地排列时的性能。当对一个系统进行计算调整时,这些准则很有效。同时,使用这些准则,当提出不同的变更之后,我们可以预测将会发生什么情况。
准则1 通过改变接地模式,可以减小特定线路之间的互感。如果将地线移至距离环路X和Y更远的地方,即增大B和C的值,式1中的两项都会增加,互感LX、Y会增大。反之,将地线靠近环路X和Y,将会减小其互感。互感的变化与距离的对数值成正比。
准则2 额外增加的地会有更直接的效果。记住式1中第二项(地线项)最大。由于地线与环路X和Y紧密耦合,地线上的电流对环路Y有很大的影响。如果我们能将地线上的电流分为两半,互感LX、Y几乎会减少一半。
如图9.4所示,通过在信号X上方增加一条地线,把地线上的电流分为两半,电流将分为两部分,分别流经每一条地线。相应地,互感LX、Y也会减小。增加更多的地线将进一步分散地线电流,但是不再像最初那样将电流一分为二。
准则3 在信号X和Y之间插入地线与在它们之外增加地线有很大的差别。如果我们在X和Y之间增加N条地线,如图9.5所示,使两者的间距加大,它们之间的耦合随之成比例下降,耦合正比于:
准则4 耦合到连接器上任意给定线路噪声来自其他每个线。简单地减少连接器上的信号个数就能减小总的串扰。另一方面,将连接器上的信号分成几组。通过在各组之间插入地线即可减少其相互干扰。分组有效地减少了对特定的接收器产生严重串扰的线路数量,串扰基本上与地线之间的信号线数目成正比。
准则5 在连接器边沿增加额外的地线减少串扰几乎不起作用,在连接器边沿采用大的接地效果也一样。
6、降低串扰有哪些方法?
当两个网络靠近时,一个网络的电流变化会引起另外一个网络的电流变化,即产生串扰。也就是两个网络之间的电磁场耦合产生。串扰只在上升、下降沿电流变化时产生。
降低串扰的方法有:
1、选择慢变化边沿信号的器件。
2、选择输出摆幅和电流小的器件。
3、为了减少PCB上的线间耦合,可以采取:
(1)加大电源地层与信号层间距;
(2)提高相邻信号层间距;
(3)减少并行走线长度;
(4)增加线间距抑制;
(5)地线隔离
(6)在受害线上采用匹配技术;
(7)关键信号线走STRIPLINE
带状线:走在内层(stripline/double stripline),埋在PCB内部的带状走线,如下图所示蓝色部分是导体,绿色部分是PCB的绝缘电介质,stripline是嵌在两层导体之间的带状导线。
因为stripline是嵌在两层导体之间,所以它的电场分布都在两个包它的导体(平面)之间,不会辐射出去能量,也不会受到外部的辐射干扰。但是由于它的周围全是电介质(介电常数比1大),所以信号在stripline 中的传输速度比在microstrip line中慢!
6、串扰的仿真
给大家介绍使用ADS进行串扰的仿真。串扰在高速电路设计中被提及非常多的一个话题,串扰要么不产生问题,要产生了问题就很难解决,所以建议大家在做设计之前做一些串扰仿真,通过仿真了解各种因素对串扰产生的影响,这样比大家死机硬背一些教条主义经验要好的多。
关于串扰的理论,大家可以参照Eric的《信号完整性分析》等书籍。
小伙伴们可能都知道,串扰与很多因素有关系,如传输线之间的耦合长度、传输信号的上升时间、传输线之间的间距等等。这里就以这三个因素为例,对串扰做一些定性的分析:
在ADS中搭建仿真的拓扑结构,这一点非常的重要,因为要是拓扑结构搭建都有问题,那么就使得仿真结果变得不可分析,所以,在如下的仿真中,都尽量以单一变量做仿真实验。
得到的串扰结果如下(蓝色为近端串扰NEXT,粉色为远端串扰FEXT):
1、上升时间:考察上升时间时,其他的参数都不变,只改变上升时间的变量,所以需要加入变化参量和扫描参数,如下所示:
上升时间从50ps开始,300ns截止,每隔50ps仿真一次,得到的仿真结果如下:
结论:随着上升时间变长,其远端串扰变小,饱和长度变长。
2、耦合长度:改变耦合长度,其他参数保持不变。长度由1inch开始,截止到6inch,每隔1inch仿真一次,变化参量和扫描参数如下:
得到的仿真结果如下:
结论: 随着耦合长度的增加,其远端串扰一直在增加,在1inch之前就已经达到饱和长度,所以在此实验中,1inch之后增加耦合长度对近端串扰没有影响。
3、传输线间距:改变传输线间距,其他参数保持不变。间距由4mil开始,截止到10mil,每隔1mil仿真一次,变化参量和扫描参数如下:
得到的仿真结果如下:
结论:由仿真结果可知,其间距越大,其近端串扰和远端串扰都会变小。
以上这些仿真例子只是抛砖引玉,大家可以进一步的仿真对比微带线与带状线的串扰、仿真对比包地对串扰的影响、传输线到参考层的距离等等。
在这些实验中,讲解了ADS参数扫描(Sweep)的仿真,还可以对多个参数同时进行扫描,即使用BatchSimulation功能:
其实大家在做硬件电路设计很多时候都会死记硬背很多公式和结论,比如满足3W规则,比如,高速传输线链路上不能加Via,等等。记得住也记得对当然很好,但是如果记不住也不知道对不对,还不如使用一些简单的仿真软件对相关的问题进行仿真,就可以得到很多实用的经验和结论,那么在设计的时候就可以做到有的放矢。
我对PCB设计的认知提升过程【1】兴趣驱动热爱
我对PCB设计的认知提升过程【2】硬件工程师要不要自己画PCB
我对PCB设计的认知提升过程【3】PCB走线应该走多长?
我对PCB设计的认知提升过程【4】PCB走线应该走多宽?
我对PCB设计的认知提升过程【5】PCB的内电层
我对PCB设计的认知提升过程【6】过孔
我对PCB设计的认知提升过程【7】PCB能不能走锐角和直角?
我对PCB设计的认知提升过程【8】死铜是否要保留?(PCB孤岛)
我对PCB设计的认知提升过程【9】焊盘上是否可以打过孔?
我对PCB设计的认知提升过程【10】PCB材料、FR4到底是指什么材料?
我对PCB设计的认知提升过程【11】阻焊层,绿油为什么多是绿色
我对PCB设计的认知提升过程【12】钢网
我对PCB设计的认知提升过程【13】预布局
我对PCB设计的认知提升过程【14】PCB布局、布线 的要领
我对PCB设计的认知提升过程【15】跨分割走线
我对PCB设计的认知提升过程【16】信号的反射
我对PCB设计的认知提升过程【17】脏信号
我对PCB设计的认知提升过程【18】沉金、镀金、喷锡等表面处理工艺
我对PCB设计的认知提升过程【19】线距
我对PCB设计的认知提升过程【20】电容的摆放位置
本文整理自
《串扰的仿真》蒋修国 信号完整性 公众号
《什么是串扰它的形成原理是怎样的》工程师周亮
《高速数字设计》霍华德 约翰逊