如下图,是IGBT产品典型的输出特性曲线,横轴是C,E两端电压,纵轴是归一化的集电极电流。可以看到IGBT工作状态分为三个部分:
【 一:截止区 】
CE间电压小于一个门槛电压,即背面PN结的开启电压,IGBT背面PN结截止,无电流流动。
【 二:饱和区 】
CE间电压大于门槛电压后,电流开始流动,CE间电压随着集电极电流上升而线性上升,这个区域称为饱和区。因为IGBT饱和电压较低,因此我们希望IGBT工作在饱和区域。
【 三:线性区 】
随着CE间电压继续上升,电流进一步增大。到一定临界点后,CE电压迅速增大,而集电极电流并不随之增长。这时我们称IGBT退出了饱和区。在这个区间内,IGBT损耗增加,发热严重,是需要避免的工作状态。
这要从IGBT的平面结构说起。IGBT和MOSFET有类似的器件结构,MOS中的漏极D相当于IGBT的集电极C,而MOS的源极S相当于IGBT的发射极E,二者都会发生退饱和现象。下图所示是一个简化平面型IGBT剖面图,以此来阐述退饱和发生的原因。栅极施加一个大于阈值的正压VGE。则栅极氧化层下方会出现强反型层,形成导电沟道。这时如果给集电极C施加正压VCE,则发射极中的电子便会在电场的作用下源源不断地从发射极E流向集电极C,而集电极中的空穴则会从集电极C流向发射极E,这样电流便形成了。这时电流随CE电压的增长而线性增长,器件工作在饱和区。当CE电压进一步增大,MOS沟道末的电势随着VCE而增长,使得栅极和硅表面的电压差很小,进而不能维持硅表面的强反型,这时沟道出现夹断现象,电流不再随CE电压的增加而成比例增长。我们称器件退出了饱和区。
此外使用双脉冲测试也可以观察IGBT的退饱和状态!
珠海富士智能股份有限公司专注于IGBT散热铜底板研发与制造!http://www.fujichinon.com/