引言
蛋白的固有无序区(Intrinsically disordered region, IDR)可介导分子间/分子内多价的弱相互作用,驱动蛋白形成的凝聚体。蛋白凝聚体根据物理特征,可以分为流动性依次减弱的的液态,胶态和固态。值得注意的是,蛋白凝聚体具备“相转变”能力,能够自发转换物理状态,例如如由液态“变硬”为胶状或固态,从而激活或抑制其功能。为了应对无序蛋白这种不稳定的物理状态,细胞演化出了复杂的调控机制。一方面,细胞利用分子伴侣来维持蛋白质的特定物理状态;另一方面,通过蛋白酶体等降解途径清除由于蛋白错误折叠产生的非活性凝聚体【1】。
在细胞内,RNA分子的生成,加工和翻译受到一系列精密的机制调控,任何调控环节的微小偏差都可能引发细胞功能异常,甚至导致疾病。其中,两个至关重要的RNA调控相关蛋白复合物 - RNA m6A甲基转移酶复合物 (Methyltransferase complex, MTC) 和微处理器复合物 (Microprocessor) - 在RNA调控网络中扮演着核心角色。MTC负责催化RNA的m6A修饰,这一表观转录修饰在RNA代谢和功能调控中起着关键作用。近期研究揭示,在拟南芥中,MTC的关键因子MTA (MTC subunit A) 能够与隐花色素CRY2共同发生液-液相分离,从而根据光照条件调节昼夜节律相关基因的m6A修饰水平【2】。然而,基于MTC的另一个关键组分MTB (MTC subunit B) 的相变控制机制仍有待阐明。微处理器复合物负责切割microRNA前体底物(pri-miRNA)生成成熟的microRNA。值得注意的是,清华大学戚益军教授课题组在之前的研究中报导了该复合物的核心成员SERRATE (SE) 也具有液-液相分离的能力。这种相分离现象能够提高微处理器复合物对pri-miRNA的加工效率,并促进miRNA双链向RNA诱导沉默复合物 (RNA-induced silencing complex, RISC) 的转运【3】。这两种复合物之间的交叉调控,以及其潜在的分子机制,仍是当前RNA生物学领域的一个重要科学问题。
2024年10月29日,德州农工大学张秀任教授团队在Nature Cell Biology杂志上发表题为SERRATE drives phase separation behaviours to regulate m6A modification and miRNA biogenesis 的研究成果,揭示了无序蛋白SERRATE介导的相分离现象在RNA m6A甲基化修饰与microRNA生成这两个关键RNA代谢过程之间的相互调控机制。

图:m6A修饰与miRNA生成机制交叉调控的模型。左上:野生型条件下,MTB可与SE形成液体状共凝聚,维持其溶解性和酶活性。左下:se突变体中,MTB可能发生错误折叠,导致其聚集及降解。右上:MTC可招募微处理器复合物至MIRNA基因,参与pri-miRNA的共转录加工。同时,m6A读取蛋白与甲基化pri-miRNA的侧翼区域及微处理器复合物相互作用,促进加工过程。右下:缺失写入酶导致pri-miRNA共转录加工和甲基化受损。此外,读取蛋白占据pri-miRNA的结构区域,阻碍下游加工事件。(Credit: Nature Cell Biology)
参考文献
1 Alberti, S. H., A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat Rev Mol Cell Biol 22, 196-213 (2021). https://doi.org/10.1038/s41580-020-00326-62 Wang, X. et al. A photoregulatory mechanism of the circadian clock in Arabidopsis. Nat Plants 7, 1397-1408 (2021). https://doi.org/10.1038/s41477-021-01002-z3 Xie, D. et al. Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nat Cell Biol 23, 32-39 (2021). https://doi.org/10.1038/s41556-020-00606-5https://www.nature.com/articles/s41556-024-01530-8责编|探索君
排版|探索君
来源|BioArt
End
往期精选
围观
一文读透细胞死亡(Cell Death) | 24年Cell重磅综述(长文收藏版)热文
Cell | 是什么决定了细胞的大小?热文
Nature | 2024年值得关注的七项技术热文
Nature | 自身免疫性疾病能被治愈吗?科学家们终于看到了希望热文
CRISPR技术进化史 | 24年Cell综述