引言
免疫检查点阻断(immune checkpoint therapy)疗法是一类通过阻断抑制T细胞活性的信号通路来提高抗肿瘤免疫反应的治疗方法【1】。其中最典型的靶点是CTLA-4和PD-1/PD-L1。该疗法对不同类型的癌症显示出明显疗效,彻底改变了肿瘤治疗的策略。美国免疫学家詹姆斯·艾利森 (James P Alison) 和日本免疫学家本庶佑 (Tasuku Honjo) 因在该领域的突出贡献共同荣获2018年诺贝尔生理学或医学奖。根据肿瘤中淋巴细胞的浸润程度,可将其分为“热肿瘤” 和“冷肿瘤”。热肿瘤中淋巴细胞浸润丰富因而对免疫疗法反应良好。冷肿瘤中缺乏免疫细胞浸润因而对免疫疗法具有抵抗性,是肿瘤免疫治疗面临的一大挑战【2】。
美国 MD Anderson Cancer Center陈曦教授实验室长期致力于内质网应激反应和蛋白质稳态和应激在免疫微环境和肿瘤耐药性中的功能,机制以及临床转化研究【3-9】。
2024年10月16日, 陈曦实验室(徐龙勇,彭方略和罗琴为本文共同第一作者)在Cell杂志在线发表了题为IRE1α silences dsRNA to prevent taxane–induced pyroptosis in triple-negative breast cancer的文章,首次报道了内质网应激反应介导三阴性乳腺癌免疫逃逸的分子机制。实验室前期的研究鉴定了针对IRE1α核糖核酸酶的特异抑制剂ORIN1001【6】,该抑制剂在一期临床试验中肿瘤患者耐受良好【10】。在这项研究中徐龙勇领导的团队发现内质网应激感受器IRE1α抑制紫衫类(taxane)化疗药引起的双链RNA(dsRNA)。靶向IRE1α同时组合taxane化疗药导致p53-/- 肿瘤细胞中dsRNA聚积并被dsRNA受体ZBP1蛋白识别后引起NLRP3-GSDMD介导的细胞热死亡-焦亡,从而导致肿瘤中大量淋巴细胞浸润和激活。这项研究表明该ORIN1001联合紫衫类化疗药可以把对免疫治疗抵抗的三阴性乳腺癌冷肿瘤转化成反应良好的热肿瘤。
参考文献
1. Sharma, P., Goswami, S., Raychaudhuri, D., Siddiqui, B.A., Singh, P., Nagarajan, A., Liu, J., Subudhi, S.K., Poon, C., Gant, K.L., et al. (2023). Immune checkpoint therapy-current perspectives and future directions. Cell 186, 1652-1669. 10.1016/j.cell.2023.03.006.2. Galon, J., and Bruni, D. (2019). Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18, 197-218. 10.1038/s41573-018-0007-y.3. Xu, L., Peng, F., Luo, Q., Ding, Y., Yuan, F., Zheng, L., He, W., Zhang, S.S., Fu, X., Liu, J., et al. (2024). IRE1α Silences dsRNA to Prevent Taxane–Induced Pyroptosis in Triple-Negative Breast Cancer. Cell (in press). 13656. doi:10.1016/j.cell.2024.09.032.4. Lv, X., Lu, X., Cao, J., Luo, Q., Ding, Y., Peng, F., Pataer, A., Lu, D., Han, D., Malmberg, E., et al. (2023). Modulation of the proteostasis network promotes tumor resistance to oncogenic KRAS inhibitors. Science 381, eabn4180. 10.1126/science.abn4180.5. Xu, L., Liu, X., Peng, F., Zhang, W., Zheng, L., Ding, Y., Gu, T., Lv, K., Wang, J., Ortinau, L., et al. (2020). Protein quality control through endoplasmic reticulum-associated degradation maintains haematopoietic stem cell identity and niche interactions. Nature Cell Biology 22, 1162-1169. 10.1038/s41556-020-00581-x.6. Zhao, N., Cao, J., Xu, L., Tang, Q., Dobrolecki, L.E., Lv, X., Talukdar, M., Lu, Y., Wang, X., Hu, D.Z., et al. (2018). Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J Clin Invest 128, 1283-1299. 10.1172/JCI95873.7. Liu, X., Yu, J., Xu, L., Umphred-Wilson, K., Peng, F., Ding, Y., Barton, B.M., Lv, X., Zhao, M.Y., Sun, S., et al. (2021). Notch-induced endoplasmic reticulum-associated degradation governs mouse thymocyte β−selection. eLife 10, e69975. 10.7554/eLife.69975.8. Chen, X., and Cubillos-Ruiz, J.R. (2021). Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nature Reviews Cancer 21, 71-88. 10.1038/s41568-020-00312-2.9. Chen, X., Iliopoulos, D., Zhang, Q., Tang, Q., Greenblatt, M.B., Hatziapostolou, M., Lim, E., Tam, W.L., Ni, M., Chen, Y., et al. (2014). XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508, 103-107. 10.1038/nature13119.10. Rimawi, M.F., Hamilton, E.P., Hurvitz, S.A., Marks, D.K., Elias, A.D., Pluard, T.J., Gabrail, N.Y., Patterson, J., Greene, S., and Zeng, Q. (2023). Early efficacy evaluation of ORIN1001, a first in IRE1 alpha inhibitor, in advanced solid tumors. Journal of Clinical Oncology 41, 1092-1092. 10.1200/JCO.2023.41.16_suppl.1092.11. Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., Li, L., Wei, W., and He, J. (2024). Cancer incidence and mortality in China, 2022. Journal of the National Cancer Center 4, 47-53. https://doi.org/10.1016/j.jncc.2024.01.006.12. Cortes, J., Rugo, H.S., Cescon, D.W., Im, S.A., Yusof, M.M., Gallardo, C., Lipatov, O., Barrios, C.H., Perez-Garcia, J., Iwata, H., et al. (2022). Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N Engl J Med 387, 217-226. 10.1056/NEJMoa2202809.13. Schmid, P., Cortes, J., Pusztai, L., McArthur, H., Küm