诺奖得主DeepMindCEO最新万字访谈:视AI为普通技术错误,A...

人工智能电子侃 2024-10-29 01:37:19

谷歌DeepMind CEO Demis Hassabis说,将人工智能视为普通技术是错误的,人工智能将具有“划时代的意义”,很快将治愈所有疾病、解决气候和能源问题并丰富我们的生活,AGI大概需要 10 年时间,因为还需要 2 到 3 项重大创新,下一项就是基于代理的系统

来源:图灵人工智能

谷歌DeepMind CEO Demis Hassabis 最近在《泰晤士报》和《泰晤士报商业版》的主办的科技峰会上发表演讲,Hassabis回顾了DeepMind的创立,谈了 AGI、AlphaFold 和 AI 的未来

照例先给大家划个重点(访谈全文附在文后):

Demis Hassabis看见了什么? Hassabis已经在游戏的微观世界中看到了一点,并且理解得很清楚:从一个随机的系统AlphaZero开始8小时就可以训练出超越最顶尖人类的国际象棋实体,虽然这只是游戏狭窄领域,但一定会扩展出世界模型

DeepMind 的初心: Hassabis 30 年前就开始研究 AI 了!从游戏 AI 到神经科学,他一直坚信 AI 的潜力。2010 年,他创立 DeepMind,因为他看到了深度学习和强化学习的巨大潜力,以及 GPU 等硬件的快速发展。他想打造一个通用的、能自我学习的 AI 系统,这正是 DeepMind 的初心!

游戏 AI,AGI 的“练兵场”: DeepMind 早期专注于游戏 AI,是因为游戏可以快速验证算法的有效性,而且容易进行基准测试。但他们的目标不仅仅是赢得游戏,而是开发通用的 AI 技术,并将其应用于其他领域,例如科学和商业

AlphaFold:AI for Science 的典范: Hassabis 一直对用 AI 解决科学难题充满热情,而蛋白质折叠问题是他最想攻克的目标之一。AlphaFold 的成功(Hassabis因AlphaFold 获得2024诺贝尔化学奖),证明了AI 在科学领域的巨大潜力!

多模态模型,AGI 的关键: Hassabis 认为,多模态模型是 AGI 系统的关键组成部分,例如 DeepMind 的 Gemini 模型,它可以处理文本、图像、音频、视频和代码等多种输入

通往 AGI 的道路:更强大的 Agent: 现在的聊天机器人大多是被动的问答系统,而未来的 AI 系统需要更主动、更智能,能够像 AlphaGo 一样进行规划和推理,并在现实世界中采取行动

AGI 时代,还有多远? Hassabis 预计,我们距离 AGI 还有大约 10 年的时间

DeepMind 的未来: DeepMind 将继续以研究为导向,同时也会加大产品研发的投入,与谷歌的其他部门合作,将 AI 技术应用于更多产品和服务中

AGI 时代,人类将进入富足时代! Hassabis 认为,AGI 将彻底改变经济和社会,消除能源和资源的稀缺性,让人类进入一个物质极大丰富的时代。我们需要提前思考如何分配这些财富,例如,是否应该实行全民基本收入制度

访谈全文:强烈推荐

注意:这是Demis Hassabis10月1日的访谈,此时距离10月9日他获得2024年诺贝尔化学奖还有几天时间,但是访谈视频今天才放出来

主持人: 我想,在座的各位几乎都知道DeepMind,也知道它现在在做什么。让我们先简单回顾一下您的故事,因为您在2010年左右创立了DeepMind,而在此之前,人工智能经历了40年的寒冬,作为一名科学记者,我当时并没有关注人工智能。DeepMind为何在那个时候出现?是有什么有利因素吗?

Demis Hassabis: 嗯,我研究人工智能实际上已经超过30年了,最初是做游戏,为游戏设计人工智能,以及模拟游戏。后来我学习了计算机科学和神经科学,并且一直在观察人工智能领域的发展。在您提到的90年代的人工智能寒冬时期,都是逻辑系统,也就是所谓的专家系统。你们很多人可能还记得深蓝在国际象棋比赛中击败了加里·卡斯帕罗夫(俄罗斯国际象棋棋手,国际象棋特级大师,前国际象棋世界冠军),这些都是预编程系统,实际上是程序员和系统设计者解决了问题,并将其封装成规则。计算机、人工智能系统实际上根本不智能,它只是在执行这些启发式方法。这样做的问题是,最终会得到脆弱的系统,它们无法学习新东西,当然也无法发现新东西,因为它们显然天生就受到设计者或程序员已知能力的限制。

所以对我来说,很明显,在整个90年代,我在剑桥和麻省理工学院学习期间,这仍然是主流观点,尤其是在那些地方,逻辑系统才是正道。我认为这就是出现很多人工智能寒冬的原因,因为它们天生就脆弱且局限。所以在2010年,DeepMind的想法是,我们可以看到深度学习刚刚在学术界被发明出来

强化学习是我们发现的东西,大脑中的多巴胺系统,动物和包括人类在内都使用强化学习来学习

因此,对我来说,显而易见的是,我们需要构建的是一个能够自学且通用的学习系统,这就是DeepMind的起源。然后我们也看到了GPU和硬件加速等技术的进步。所以我使用了第一代GPU,它是用于计算机图形、计算机游戏的,但它们是非常通用的,事实证明,世界上的一切都是矩阵乘法。我们很早就开始了,我们觉得这就像一个阿波罗计划,需要付出巨大的努力才能将所有这些新奇的想法和成分整合在一起可以取得非常快的进展,结果也确实如此

主持人: 这是您在普林斯顿时期预想的结果吗?您是否想过15年后,我会在这里与您对话,人工智能会成为热门话题,并且蛋白质折叠问题会被解决?

Demis Hassabis: 实际上,它大致沿着我们计划的路线发展,当然,过程中也有一些小插曲和意想不到的事情,但当我们在2010年开始时,我们认为要达到通用人工智能大约需要20年的时间。我认为我们可能距离这个目标还有10年左右的时间。从现在开始,大致是那个时间线,用人工智能系统进行科学研究,在通往人工智能的道路上解决科学问题一直是我的主要热情所在。蛋白质折叠一直是我最想解决的科学难题之一,如果我们能够取得突破,它将带来变革

主持人: 好的,让我们回到这一点,我认为我们也应该谈谈人工智能,因为有趣的是,自从ChatGPT出现以来,我们作为一个社会一直在非常深入地讨论人工智能,它与您一直在做的人工智能是截然不同的,作为一名观察者,您的人工智能一直都非常具体,观察它有点奇怪,你知道,它开始做一些毫无意义的事情。它非常擅长电脑游戏

Demis Hassabis: 我不会说它们毫无意义,但它们更多的是为了好玩,也许你可以这么说。我们从游戏入手,部分原因是我的游戏背景以及认真下棋等等。但我可以看到,游戏与人工智能一直有着悠久的历史。从图灵和香农在人工智能领域的早期开始,所有这些伟大的,他们都是从象棋程序开始的。几乎每个AI先驱都这样做过。而且,它一直是我们的试验场。你能用你的算法思想快速取得进展吗?然后很容易衡量你的水平,如果你能击败世界冠军或最好的计算机,那么你就知道你做得很好。但关键是,它们始终是达到目的的手段,而不是目的本身。所以我们的想法是:

不要仅仅为了击败围棋或国际象棋的冠军,而是要以一种能够推广到其他领域的方式来做到这一点,包括科学和商业应用。这就是我们用深度强化学习和AlphaGo所做的,所有这些都是非常通用的系统,我们至今仍在使用

现在,当你谈到像AlphaFold或我们的科学程序,它们解决了蛋白质折叠等问题时,你真正感兴趣的是解决方案本身。如果你找到了治疗癌症的方法,你不会在乎它是如何做到的。你只想要治疗癌症的方法。所以你真的想全力以赴。所以你首先要做的就是把你所有的通用技术作为基线。然后你再看领域本身,如果这个领域对社会或商业足够有价值,那么你就在上面添加定制的东西。这就是你如何得到像AlphaFold这样的突破性程序。但最终,DeepMind的目标,从我们创立之初到现在,仍然是实现通用人工智能,这意味着一个通用的系统,它能够开箱即用地完成任何你能完成的认知任务。完全通用,就像阿兰·图灵在50年代所定义的那样,能够计算任何可计算的东西。这是人工智能作为一个领域的最初目标,也是DeepMind的目标

当然,你最近看到的是像这些语言模型之类的东西。实际上是ChatGPT进入了大众市场,进入了公众的视野。但实际上,所有顶级实验室,包括谷歌和DeepMind,都在研究语言模型。我们有自己的内部模型,叫做Chinchilla,谷歌也有他们的模型。当然,它们都是基于Transformer架构的,这是谷歌研究院发明的,所有当前的模型都是基于它的。所以这是一个激动人心的时刻,因为语言显然是一种通用能力。这就是为什么每个人都对聊天机器人感到非常兴奋的原因。而且非常有趣,而且有点出乎意料的是,这项技术能够扩展到如此程度。我认为我们比以往任何时候都更接近构建这些类型的通用系统。但目前你仍然需要专门的系统来在特定领域做到最高水平

主持人: 大型语言模型更接近AGI吗?我的意思是,它感觉更像是在与人互动,而这感觉就像AGI。但它真的是吗?

Demis Hassabis: 我认为,多模态,

0 阅读:0

人工智能电子侃

简介:感谢大家的关注