胰腺神经内分泌肿瘤根治性切除术后复发的研究进展

普外空间养护 2024-03-21 13:03:35

作者:雷继安,李刚,任思谦,阿卜杜海拜尔·萨杜拉,袁蒙,孟猛,原春辉

文章来源:中华普通外科杂志, 2024, 39(2)

摘要

胰腺神经内分泌肿瘤近年来发病率呈逐年上升趋势,手术为主的综合治疗可使患者获得良好远期预后,但其根治性切除术后仍有复发风险,且复发意味着更差的预后。本文综述胰腺神经内分泌肿瘤根治性切除术后复发的现状,从人口学特征、肿瘤学特征、血液循环标志物、影像与放射学特征、肿瘤免疫微环境与分子组学六方面总结复发高危因素,对现有的复发预测模型进行归纳和评价,并进一步探索随访与辅助治疗策略。

胃肠胰神经内分泌肿瘤(gastroenteropancreatic neuroendocrine neoplasms,GEP-NENs)是一组起源于胃肠和胰腺的异质性肿瘤,具有神经元表型和分泌神经肽和激素的能力,近年来发病率呈逐年上升趋势[1]。其中,胰腺神经内分泌肿瘤(pancreatic neuroendocrine neoplasms/tumors,PNETs)发病率在欧美人群GEP-NENs中排名第三,且1973—2012年发病率升高4.6倍(每年0.18/10万增加到0.82/10万)[2],而在基于中国人群的回顾性研究中PNETs发病率占首位(31.5%)[3]。根据2019版WHO胰腺肿瘤分类,NENs分为低(G1,Ki-67<3%)、中(G2,K-i67 3%~20%)、高(G3,Ki-67>20%)3个级别[4]。2020年中国PNETs诊疗指南指出以手术为主的综合治疗可使患者获得良好远期预后,但PNETs根治性切除术后仍有复发风险,且复发意味着更差的预后。本文综述PNETs根治性切除术后复发的最新研究进展。

一、PNETs根治性切除术后复发的现况

目前,主要针对PNETs根治性切除术后复发的研究相对较少,且存在下述问题:不同国家和机构报告的不同原发部位发病率及术前术后辅助治疗存在显著异质性;早期对肿瘤认识不足,家族性综合征患者纳入存在不一致性;文献多为回顾性研究,对于复发的诊断和随访具有异质性且缺乏详细的病理数据,尤其是Ki-67指数和淋巴结状态。

Li等[5]Meta分析后得出高分化PNETs根治性切除术后综合复发率为13%,而Andreasi等[6]则单独分析非功能性PNETs为21%。Singh等[7]分析了1994—2012年之间936例GEP-NENs患者临床数据,中位随访时间46.8个月,发现PNETs初次手术后复发率高于小肠和其他部位,3、5、10年复发率分别为26.5%、39.6%、57%。Dong等[8]分析了1997至2016年间1 020例接受PNETs手术切除的患者,154例(15.1%)在中位随访34.7个月后出现复发,肝脏和残余胰腺是最常见的复发部位,其他复发部位包括远处淋巴结、腹膜、肺、腹膜后等,且复发高峰位于术后2年内。Lamarca等[9]回顾文献后考虑到晚期主要存在肝脏转移复发的风险,建议PNETs长期随访10年以上。

二、PNETs根治性切除术后复发的高危因素

1.人口学特征:高龄已被证明在很多肿瘤中是较差生存时间和疾病进展时间的有力预测因素,Chouliaras等[10]表明年龄(P=0.002)是复发的预测因子,但更多文献未见年龄与复发差异有统计学意义。De Rycke等[11]研究表明O(RhD+)型血患者在PNETs根治性切除后复发风险可能降低,考虑与ABO糖基转移酶或糖基化模式及其组织炎症状态(TNFα)/细胞间黏附(ICAM1)的改变相关,但其确切的潜在机制尚未得到充分研究。代谢综合征通常定义为肥胖、血压升高、血糖升高和血脂异常,Awwad等[12]发现初步根治性切除后,代谢综合征不影响复发风险,但与早期复发和复发后更差的预后相关。而在另一些研究中,术前血糖>5.6 mmol/L[13],以及术后糖尿病新发或恶化被认为与复发风险增加独立相关,但使用二甲双胍可降低复发风险[14]。

2.肿瘤学特征:PNETs多为散发性,但也存在遗传性肿瘤易感综合征患者,包括多发性内分泌肿瘤1型(MEN1)、von Hippel-Lindau病(VHL)、1型神经纤维瘤病(NF1)和结节性硬化症(TSC),Gudmundsdottir等[15]认为其与增加的复发风险无关。PNETs按照是否分泌激素分为功能性(F-PNET)与非功能性(NF-PNET)两大类,最常见的功能性 PNETs是胰岛素瘤、胃泌素瘤、胰高血糖素瘤等。功能状态是PNETs的一个有利特征,仅有4%的病例被报道复发,F-PNET由于分泌激素而在早期被诊断,其预后仍主要受肿瘤分级和病理特征驱动[16]。在NF-PNET中,通常由检查意外发现,但若出现症状(黄疸、疼痛、出血),则可能意味着更大的肿瘤(>20 mm)、更高的分级(G2及以上或Ki-67>5%)、更频繁的淋巴血管和周围神经浸润,而这些特征被认为预示着更差的无复发生存期(RFS)[6,17, 18, 19]。除此之外,淋巴结转移与淋巴结比率是PNETs根治性手术后复发的独立预测因子[19, 20],无转移、1~3个、4个或更多阳性淋巴结3年RFS率分别为89%、83%、75%,且识别阳性淋巴结的概率与检查淋巴结的数量有关(建议检查至少13个)[21]。其他可能增加复发风险的因素包括:切缘阳性[9]、主胰管扩张[22]、胰胆管梗阻[23]、邻近器官侵袭[24]、存在坏死[21]、肿瘤沉积物[25]等,这些因素还有待进一步研究。近年来还有学者联合肿瘤宏观生长模式(膨胀/浸润)和显微镜下肿瘤边界状态(推挤/浸润),发现具有浸润/浸润状态的PNETs患者的总生存期(OS)和RFS显著缩短[26]。

3.血液循环标志物:目前,PNETs尚无特异血清学预后标志物,以前的研究表明了嗜铬粒蛋白A(CgA)的潜力,Shanahan等[27]研究发现根治性切除PNETs的患者中,术前CgA水平升高与无病生存期(DFS)和OS呈负相关,并且是DFS的唯一独立预测因子,但其有效性还有待深究。近年来有人基于血清mRNA特征进行基因表达检测(NETest),Modlin等[28]证明NETest比CgA确定进展性疾病性能更佳(95%比57%),成像一致性更高(91%比46%),且术后的复发阳性预测率更高(>94%比11%),在进一步研究中,证明升高的术后第30天(POD30)NETest预测复发的准确率为 94%,且术后POD30 NETest随访分层可降低42%的成本[29]。另外外周炎性血液标志物可反映全身炎症反应,且在促进许多恶性肿瘤的肿瘤发生和癌症进展中发挥作用,主要包括C反应蛋白(CRP)[30]、淋巴细胞与单核细胞的比率(LMR)[31]、γ-谷氨酰转移酶与淋巴细胞比值指数(GLRI)[32]、血清碱性磷酸酶与白蛋白比率(APAR)[33]等,研究表明这些参数可一定程度预测PNETs根治性术后的复发。

4.影像与放射学特征:随着影像学技术的发展,PNETs术前评估更加细致而全面,主要包括CT、MRI及氟-18标记氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(18F-FDG PET/CT)等。Okabe等[34]定义了“不规则形状和(或)增强”的肿瘤,发现其与同步肝转移、淋巴结转移、病理性包膜浸润、更大的肿瘤大小、更高分期和分级相关,使肿瘤复发风险增加(HR=13.6)。Han等[35]通过术前MRI发现门静脉和肠系膜上静脉的侵袭与1年复发显著相关,肿瘤大小、门静脉期等低增强、血管侵犯和胰胆管扩张亦可用于预测PNETs手术后的复发和不良DFS。Han等[35]进一步将门静脉侵犯分类,再次证实其可能是术后复发的预测因子。Matsumoto等[36]研究认为18F-FDG PET/CT的SUVmax≥2.0可能与更高的PNETs恶性潜能相关。近年来也有学者结合影像学研究表明肿瘤生长率TGR3m≥0.8的患者无进展生存时间(PFS)更短(HR=2.13),12个月时的进展风险更高[37]。随着影像学技术的不断提升,影像组学将在疾病预后预测中发挥重要作用。

5.肿瘤免疫微环境:PNETs中免疫细胞的浸润似乎高于中肠NETs,这可能是由于Pan-NETs的突变负担较高[38]。Wei等[39]筛选出包括T细胞、自然杀伤细胞、巨噬细胞和肥大细胞等在内的六个免疫特征(CCL19、IL-16、CD163、IRF4、CD8PT和CD8IT),创建了PNETs的Immunoscore(ISpnet)系统,并根据其表达水平的回归系数计算每例患者的免疫特征,根据截断值2.14将患者分为高风险和低风险,低风险患者的5年RFS更长(HR=0.061,P<0.000 1),预后更好。Zhang等[40]研究了三级淋巴结构(tertiary lymphoid structures,TLS),主要由具有生发中心的B淋巴滤泡和具有树突状细胞的T细胞区组成,研究发现TLS的存在与较长的RFS和OS相关,是根治性切除后的G1/G2 NF-PNET的独立预测因子。他们的研究[41]还发现高瘤内肿瘤浸润性中性粒细胞(TIN)、总肿瘤相关巨噬细胞(TAM)和瘤周CD4+T细胞浸润与较短的RFS相关,而高瘤内CD8+T细胞浸润与延长的RFS相关,Xu等[42]也得出类似的结论,他们还发现中性粒细胞或巨噬细胞细胞外陷阱(extracellular trap,ET)的形成与较差的RFS相关。

6.分子组学:分子技术的进步已经为PNETs确定了潜在的预后生物标志物。全转录组和表观基因组研究发现转录因子aristaless相关同源框基因(ARX)的阳性表达和胰腺十二指肠同源框1(PDX1)阴性表达可以作为根治性术后预测复发转移的标志物,PDX1表达通常与惰性临床行为相关,而ARX的表达与侵袭性过程相关[43]。α-地中海贫血/智力迟钝X连锁(ATRX)/死亡域相关蛋白(DAXX)丢失和端粒的替代延长(ALT)阳性与术后复发转移和不良预后相关,ATRX/DAXX阴性和ALT阳性NF-PNET患者与野生型相比,5年RFS率分别为40%比85%和42%比86%[44]。全基因组测序发现突变谱和拷贝数变异(copy-number variation,CNV)模式可分为扩增、中性拷贝、缺失,胰岛素瘤具有扩增和中性拷贝而无缺失,NF-PNET具有所有三种模式,具有扩增和缺失模式的NF-PNET复发风险升高,而额外的DAXX/ATRX突变可以预测前2年的复发[45]。单细胞RNA测序(scRNA-seq)显示了PNETs原发性和转移性病变在细胞群、转录状态和细胞间通讯水平的肿瘤内和肿瘤间异质性,并开发了定义肿瘤转移潜力的基因特征(PCSK1和SMOC1),并在G1/G2根治性术后患者队列中证明了其双阳性表达可以识别术后复发的高危患者。Hua等[46]通过构建组织微阵列,并对DNA损伤修复蛋白(DNA damage repair proteins,DDRs)进行免疫组化检查,发现低检查点激酶2(CHK2)表达和共济失调毛细血管扩张症突变(ATM)缺失与复发相关。其他一些研究通过RNA测序筛选差异表达基因,并通过免疫组化明确与根治性术后复发风险升高相关的分子,包括C型凝集素结构域家族3A(CLEC3A)、基质金属蛋白酶-7(MMP7)和脂质运载蛋白2(LCN2)阳性表达[47],肝激酶B1(LKB1)低或阴性表达,组蛋白去乙酰化酶5(HDAC5)上调[48],白细胞分化抗原44(CD44)和133(CD133)上调表达[49]等。随着检测技术的进步与对肿瘤认识的深入,还会有更多差异表达且与预后相关的分子被发现,其作用机制与预测强度有待进一步研究。

三、PNETs根治性切除术后复发的预测模型

与PNETs根治性术后复发的危险因素繁多,涉及人口学特征、肿瘤学特征、血液循环标志物、影像与放射学特征、肿瘤免疫微环境、分子组学特征。目前国际公认的ENETS/AJCC指南分期系统包括肿瘤大小与局部进展范围、是否存在淋巴结转移和远处转移(TNM系统),但没有针对PNETs根治性术后复发风险的准确评估,仅以分级进行简单分类指导后续治疗和随访。为了更加准确地预测PNETs根治性术后的复发风险,已开发了多种以列线图和评分系统为主要模式的预测模型,其内容总结在表1中。

如表1所示,预测模型早期主要以评分系统为主,具有相似临床病理学特征的患者分组为相应的风险类别(即低风险、中风险和高风险)。相比于评分系统,列线图将复杂的回归方程转变为可视化的图形,对于肿瘤学的预后有更高的预测价值。在上述风险预测模型中,研究人群大多是分化良好的G1/G2期NF-PNET,研究得到的风险因素中除两个影像学预测模型外,均涉及Ki-67(或组织学分级),其他主要包括肿瘤大小、淋巴结转移及数量、血管/神经侵犯等,另外Fisher等[53]将血液循环标志物CgA纳入模型,Zhang等[40]和Xu等[42]将肿瘤免疫微环境纳入模型,以此提高预测能力。最后,预测模型的准确性需要验证,包括内部独立验证、内部重复验证及外部验证,8个预测模型未进行验证,需要进一步的研究证实。

四、PNETs根治性切除术后的随访与辅助治疗策略

PNETs根治性术后的随访内容包括临床症状、血液指标以及传统影像学检查和生长抑素受体(SSTR)显像,欧洲医学肿瘤学会指南(ESMO)建议:对于R0/R1切除的NET G1和NET G2且Ki-67低(<5%)的患者,每6个月进行一次影像学检查(CT或MRI),在NET G2(Ki-67>5%)每3个月一次,在NET G3中每2~3个月一次,随着随访时间的增加,分期间隔可以延长[1]。但此随访策略仅考虑到组织学分级和Ki-67指数,可能延误复发患者的治疗或者造成低风险患者的过度诊疗,仍需要根据复发风险进行更详尽的分组。

分化良好的PNETs通常被认为是惰性,且预后良好,然而肿瘤复发会影响患者的OS(163个月比139个月,P<0.05)[51],但是迄今为止尚未设计出有效的辅助治疗策略[化疗、靶向治疗、肽受体放射性核素治疗(PRRT)等]。Barrett等[62]进行的一项多中心研究认为GEP-NENs根治性术后的辅助治疗不会提供复发或生存获益,Xie等[63]通过国家癌症数据库分析得出类似的结论,但上述研究均为回顾性非随机研究,存在选择偏倚及组织学分级、治疗类型等混杂偏倚。Wang等[22]研究发现长效生长抑素类似物(SSA)作为辅助治疗结果同上,然而在具有高风险因素的亚群中,SSA辅助治疗显著降低了复发率并延长了生存期,且生长抑素受受体2/5(SSTR2/5)的阳性表达与更好的SSA疗效相关。中国临床肿瘤学会诊疗指南(CSCO)建议对有淋巴结转移、神经脉管受侵、胰管扩张、肿瘤>4 cm等高危复发因素的PNETs G2患者,可考虑行术后辅助治疗,推荐SSA(针对SSTR阳性的患者);对于G3患者还可经验性地使用卡培他滨联合替莫唑胺方案治疗。

五、小结

PNETs根治性术后总体复发转移率可高达13.7%~36.2%,复发高危因素主要包括Ki-67>5%(或组织学分级G2及以上)、肿瘤大小>20 mm、淋巴结转移阳性、血管/神经侵犯、非R0切缘等,除此之外还可能有CT/MRI/18F-FDG PET/CT特征、肿瘤免疫微环境如ISpnet系统及基因与转录组学等。复发预测模型以评分系统与列线图为主,除上述主要危险因素外,CgA、肿瘤免疫微环境等在模型中的纳入可能会提高预测能力。另外基于影像组学的预测模型亦表现出一定优势。最后PNETs根治性切除术后的随访策略目前主要依据Ki-67(或组织学分级)分层决定,但更细致的风险分层需要进一步研究使其更具成本效益。另外SSA作为具有高危因素患者的辅助治疗可提高OS和RFS,但术后辅助治疗效用需要更大规模的前瞻性随机对照试验进行验证。

参考文献

[1]

PavelM, ÖbergK, FalconiM, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2020,31(7):844-860. DOI: 10.1016/j.annonc.2020.03.304.

[2]

DasariA, ShenC, HalperinD, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States[J]. JAMA Oncol, 2017,3(10):1335-1342. DOI: 10.1001/jamaoncol.2017.0589.

[3]

FanJH, ZhangYQ, ShiSS, et al. A nation-wide retrospective epidemiological study of gastroenteropancreatic neuroendocrine neoplasms in China[J]. Oncotarget, 2017,8(42):71699-71708. DOI: 10.18632/oncotarget.17599.

[4]

NagtegaalID, OdzeRD, KlimstraD, et al. The 2019 WHOification of tumours of the digestive system[J]. Histopathology, 2020, 76(2): 182-188. DOI: 10.1111/his.13975.

[5]

LiY, FanG, YuF, et al. Meta-analysis of prognostic factors for recurrence of resected well-differentiated pancreatic neuroendocrine tumors[J]. Neuroendocrinology, 2021,111(12):1231-1237. DOI: 10.1159/000514047.

[6]

AndreasiV, RicciC, PartelliS, et al. Predictors of disease recurrence after curative surgery for nonfunctioning pancreatic neuroendocrine neoplasms (NF-PanNENs): a systematic review and meta-analysis[J]. J Endocrinol Invest, 2022,45(4):705-718. DOI: 10.1007/s40618-021-01705-2.

[7]

SinghS, ChanDL, MoodyL, et al. Recurrence in resected gastroenteropancreatic neuroendocrine tumors[J]. JAMA Oncol, 2018,4(4):583-585. DOI: 10.1001/jamaoncol.2018.0024.

[8]

DongDH, ZhangXF, Lopez-AguiarAG, et al. Resection of pancreatic neuroendocrine tumors: defining patterns and time course of recurrence[J]. HPB (Oxford), 2020,22(2):215-223. DOI: 10.1016/j.hpb.2019.05.020.

[9]

LamarcaA, CloustonH, BarriusoJ, et al. Follow-up recommendations after curative resection of well-differentiated neuroendocrine tumours: review of current evidence and clinical practice[J]. J Clin Med, 2019,8(10):1630. DOI: 10.3390/jcm8101630.

[10]

ChouliarasK, NewmanNA, ShuklaM, et al. Analysis of recurrence after the resection of pancreatic neuroendocrine tumors[J]. J Surg Oncol, 2018,118(3):416-421. DOI: 10.1002/jso.25146.

[11]

De RyckeO, VédieAL, GuarneriG, et al. O-positive blood type is associated with prolonged recurrence-free survival following curative resection of pancreatic neuroendocrine tumors[J]. Pancreatology, 2020,20(8):1718-1722. DOI: 10.1016/j.pan.2020.09.014.

[12]

AwwadF, OzgaAK, AminT, et al. Metabolic syndrome is associated with impaired survival after surgery for pancreatic neuroendocrine tumors[J]. Neuroendocrinology, 2022,112(12):1225-1236. DOI: 10.1159/000524366.

[13]

GongY, FanZ, ZhangP, et al. High pre-operative fasting blood glucose levels predict a poor prognosis in patients with pancreatic neuroendocrine tumour[J]. Endocrine, 2021,71(2):494-501. DOI: 10.1007/s12020-020-02469-0.

[14]

de MestierL, VédieAL, FaronM, et al. The postoperative occurrence or worsening of diabetes mellitus may increase the risk of recurrence in resected pancreatic neuroendocrine tumors[J]. Neuroendocrinology, 2020,110(11-12):967-976. DOI: 10.1159/000505158.

[15]

GudmundsdottirH, GrahamRP, SonbolMB, et al. Multifocality is not associated with worse survival in sporadic pancreatic neuroendocrine tumors[J]. J Surg Oncol, 2021,124(7):1077-1084. DOI: 10.1002/jso.26618.

[16]

PulvirentiA, JavedAA, LandoniL, et al. Multi-institutional development and external validation of a nomogram to predict recurrence after curative resection of pancreatic neuroendocrine tumors[J]. Ann Surg, 2021,274(6):1051-1057. DOI: 10.1097/SLA.0000000000003579.

[17]

BroadbentR, WheatleyR, StajerS, et al. Prognostic factors for relapse in resected gastroenteropancreatic neuroendocrine neoplasms: a systematic review and meta-analysis[J]. Cancer Treat Rev, 2021,101:102299. DOI: 10.1016/j.ctrv.2021.102299.

[18]

ShoS, CourtCM, WinogradP, et al. A prognostic scoring system for the prediction of metastatic recurrence following curative resection of pancreatic neuroendocrine tumors[J]. J Gastrointest Surg, 2019,23(7):1392-1400. DOI: 10.1007/s11605-018-4011-7.

[19]

ZaidiMY, Lopez-AguiarAG, SwitchenkoJM, et al. A novel validated recurrence risk score to guide a pragmatic surveillance strategy after resection of pancreatic neuroendocrine tumors: an international study of 1 006 patients[J]. Ann Surg, 2019,270(3):422-433. DOI: 10.1097/SLA.0000000000003461.

[20]

MarchegianiG, LandoniL, AndrianelloS, et al. Patterns of recurrence after resection for pancreatic neuroendocrine tumors: who, when, and where?[J]. Neuroendocrinology, 2019,108(3):161-171. DOI: 10.1159/000495774.

[21]

PartelliS, JavedAA, AndreasiV, et al. The number of positive nodes accurately predicts recurrence after pancreaticoduodenectomy for nonfunctioning neuroendocrine neoplasms[J]. Eur J Surg Oncol, 2018,44(6):778-783. DOI: 10.1016/j.ejso.2018.03.005.

[22]

WangWQ, ZhangWH, GaoHL, et al. A novel risk factor panel predicts early recurrence in resected pancreatic neuroendocrine tumors[J]. J Gastroenterol, 2021,56(4):395-405. DOI: 10.1007/s00535-021-01777-0.

[23]

SallinenVJ, Le LargeT, TieftrunkE, et al. Prognosis of sporadic resected small (≤2 cm) nonfunctional pancreatic neuroendocrine tumors: a multi-institutional study[J]. HPB (Oxford), 2018,20(3):251-259. DOI: 10.1016/j.hpb.2017.08.034.

[24]

MerathK, BaganteF, BealEW, et al. Nomogram predicting the risk of recurrence after curative-intent resection of primary non-metastatic gastrointestinal neuroendocrine tumors: an analysis of the U.S. Neuroendocrine Tumor Study Group[J]. J Surg Oncol, 2018,117(5):868-878. DOI: 10.1002/jso.24985.

[25]

KankavaK, MaisonneuveP, MangognaA, et al. Prognostic features of gastro-entero-pancreatic neuroendocrine neoplasms in primary and metastatic sites: grade, mesenteric tumour deposits and emerging novelties[J]. J Neuroendocrinol, 2021,33(8):e13000. DOI: 10.1111/jne.13000.

[26]

AhnB, KimJY, HongSM. Combined infiltrative macroscopic growth pattern and infiltrative microscopic tumor border status is a novel surrogate marker of poor prognosis in patients with pancreatic neuroendocrine tumor[J]. Arch Pathol Lab Med, 2023,147(1):100-116. DOI: 10.5858/arpa.2021-0475-OA.

[27]

ShanahanMA, SalemA, FisherA, et al. Chromogranin A predicts survival for resected pancreatic neuroendocrine tumors[J]. J Surg Res, 2016,201(1):38-43. DOI: 10.1016/j.jss.2015.10.006.

[28]

ModlinIM, KiddM, FalconiM, et al. A multigenomic liquid biopsy biomarker for neuroendocrine tumor disease outperforms CgA and has surgical and clinical utility[J]. Ann Oncol, 2021,32(11):1425-1433. DOI: 10.1016/j.annonc.2021.08.1746.

[29]

ModlinIM, KiddM, FrillingA, et al. Molecular genomic assessment using a blood-based mRNA signature (NETest) is cost-effective and predicts neuroendocrine tumor recurrence with 94% accuracy[J]. Ann Surg, 2021,274(3):481-490. DOI: 10.1097/SLA.0000000000005026.

[30]

PrimavesiF, AndreasiV, HoogwaterF, et al. A preoperative clinical risk score including C-reactive protein predicts histological tumor characteristics and patient survival after surgery for sporadic non-functional pancreatic neuroendocrine neoplasms: an international multicenter cohort study[J]. Cancers (Basel), 2020,12(5):1235. DOI: 10.3390/cancers12051235.

[31]

GaitanidisA, PatelD, NilubolN, et al. Markers of systemic inflammatory response are prognostic factors in patients with pancreatic neuroendocrine tumors (PNETs): a prospective analysis[J]. Ann Surg Oncol, 2018,25(1):122-130. DOI: 10.1245/s10434-017-6241-4.

[32]

ZhouB, ZhanC, WuJ, et al. Prognostic significance of preoperative gamma-glutamyltransferase to lymphocyte ratio index in nonfunctional pancreatic neuroendocrine tumors after curative resection[J]. Sci Rep, 2017,7(1):13372. DOI: 10.1038/s41598-017-13847-6.

[33]

ZhouW, FangY, HanX, et al. The value of alkaline phosphatase-to-albumin ratio in detecting synchronous metastases and predicting postoperative relapses among patients with well-differentiated pancreatic neuroendocrine neoplasms[J]. J Oncol, 2020,2020:8927531. DOI: 10.1155/2020/8927531.

[34]

OkabeH, HashimotoD, ChikamotoA, et al. Shape and enhancement characteristics of pancreatic neuroendocrine tumor on preoperative contrast-enhanced computed tomography may be prognostic indicators[J]. Ann Surg Oncol, 2017, 24(5): 1399-1405. DOI: 10.1245/s10434-016-5630-4.

[35]

HanS, KimJH, YooJ, et al. Prediction of recurrence after surgery based on preoperative MRI features in patients with pancreatic neuroendocrine tumors[J]. Eur Radiol, 2022, 32(4): 2506-2517. DOI: 10.1007/s00330-021-08316-8.

[36]

MatsumotoT, OkabeH, YamashitaYI, et al. Clinical role of fludeoxyglucose (18F) positron emission tomography/computed tomography ((18)F-FDG PET/CT) in patients with pancreatic neuroendocrine tumors[J]. Surg Today, 2019, 49(1): 21-26. DOI: 10.1007/s00595-018-1703-2.

[37]

LamarcaA, CronaJ, RonotM, et al. Value of tumor growth rate (TGR) as an early biomarker predictor of patients' outcome in neuroendocrine tumors (NET)-the GREPONET study[J]. Oncologist, 2019, 24(11): e1082-e1090. DOI: 10.1634/theoncologist.2018-0672.

[38]

da SilvaA, BowdenM, ZhangS, et al. Characterization of the neuroendocrine tumor immune microenvironment[J]. Pancreas, 2018, 47(9): 1123-1129. DOI: 10.1097/MPA.0000000000001150.

[39]

WeiM, XuJ, HuaJ, et al. From the immune profile to the immunoscore: signatures for improving postsurgical prognostic prediction of pancreatic neuroendocrine tumors[J]. Front Immunol, 2021, 12: 654660. DOI: 10.3389/fimmu.2021.654660.

[40]

ZhangWH, WangWQ, HanX, et al. Infiltrating pattern and prognostic value of tertiary lymphoid structures in resected non-functional pancreatic neuroendocrine tumors[J]. J Immunother Cancer, 2020, 8(2): e001188. DOI: 10.1136/jitc-2020-001188.

[41]

ZhangWH, WangWQ, GaoHL, et al. Tumor-infiltrating neutrophils predict poor survival of non-functional pancreatic neuroendocrine tumor[J]. J Clin Endocrinol Metab, 2020, 105(7): dgaa196 [pii]. DOI: 10.1210/clinem/dgaa196.

[42]

XuSS, LiH, LiTJ, et al. Neutrophil extracellular traps and macrophage extracellular traps predict postoperative recurrence in resectable nonfunctional pancreatic neuroendocrine tumors[J]. Front Immunol, 2021, 12: 577517. DOI: 10.3389/fimmu.2021.577517.

[43]

CejasP, DrierY, DreijerinkK, et al. Enhancer signatures stratify and predict outcomes of non-functional pancreatic neuroendocrine tumors[J]. Nat Med, 2019, 25(8): 1260-1265. DOI: 10.1038/s41591-019-0493-4.

[44]

HackengWM, BrosensL, KimJY, et al. Non-functional pancreatic neuroendocrine tumours: ATRX/DAXX and alternative lengthening of telomeres (ALT) are prognostically independent from ARX/PDX1 expression and tumour size[J]. Gut, 2022, 71(5): 961-973. DOI: 10.1136/gutjnl-2020-322595.

[45]

HongX, QiaoS, LiF, et al. Whole-genome sequencing reveals distinct genetic bases for insulinomas and non-functional pancreatic neuroendocrine tumours: leading to a newification system[J]. Gut, 2020, 69(5): 877-887. DOI: 10.1136/gutjnl-2018-317233.

[46]

HuaJ, ShiS, XuJ, et al. Expression patterns and prognostic value of DNA damage repair proteins in resected pancreatic neuroendocrine neoplasms[J]. Ann Surg, 2022, 275(2): e443-e452. DOI: 10.1097/SLA.0000000000003884.

[47]

MikiM, OonoT, FujimoriN, et al. CLEC3A, MMP7, and LCN2 as novel markers for predicting recurrence in resected G1 and G2 pancreatic neuroendocrine tumors[J]. Cancer Med, 2019, 8(8): 3748-3760. DOI: 10.1002/cam4.2232.

[48]

KlieserE, UrbasR, StättnerS, et al. Comprehensive immunohistochemical analysis of histone deacetylases in pancreatic neuroendocrine tumors: HDAC5 as a predictor of poor clinical outcome[J]. Hum Pathol, 2017, 65: 41-52. DOI: 10.1016/j.humpath.2017.02.009.

[49]

SunZ, LiD, WuH, et al. Tumour stem cell markers CD133 and CD44 are useful prognostic factors after surgical resection of pancreatic neuroendocrine tumours[J]. Oncol Lett, 2020, 20(6): 341. DOI: 10.3892/ol.2020.12204.

[50]

GaoH, LiuL, WangW, et al. Novel recurrence risk stratification of resected pancreatic neuroendocrine tumor[J]. Cancer Lett, 2018, 412: 188-193. DOI: 10.1016/j.canlet.2017.10.036.

[51]

GençCG, JilesenAP, PartelliS, et al. A new scoring system to predict recurrent disease in grade 1 and 2 nonfunctional pancreatic neuroendocrine tumors[J]. Ann Surg, 2018, 267(6): 1148-1154. DOI: 10.1097/SLA.0000000000002123.

[52]

AusaniaF, Senra Del RioP, Gomez-BravoMA, et al. Can we predict recurrence in WHO G1-G2 pancreatic neuroendocrine neoplasms? Results from a multi-institutional Spanish study[J]. Pancreatology, 2019, 19(2): 367-371. DOI: 10.1016/j.pan.2019.01.007.

[53]

FisherAV, Lopez-AguiarAG, RendellVR, et al. Predictive value of chromogranin A and a pre-operative risk score to predict recurrence after resection of pancreatic neuroendocrine tumors[J]. J Gastrointest Surg, 2019,23(4): 651-658. DOI: 10.1007/s11605-018-04080-1.

[54]

SunHT, ZhangSL, LiuK, et al. MRI-based nomogram estimates the risk of recurrence of primary nonmetastatic pancreatic neuroendocrine tumors after curative resection[J]. J Magn Reson Imaging, 2019, 50(2): 397-409. DOI: 10.1002/jmri.26603.

[55]

ZhangC, WuY, ZhuangH, et al. Establishment and validation of an AJCC stage- and histologic grade-based nomogram for pancreatic neuroendocrine tumors after surgical resection[J]. Cancer Manag Res, 2019, 11: 7345-7352. DOI: 10.2147/CMAR.S200340.

[56]

ZouS, JiangY, WangW, et al. Novel scoring system for recurrence riskification of surgically resected G1/2 pancreatic neuroendocrine tumors: retrospective cohort study[J]. Int J Surg, 2020, 74: 86-91. DOI: 10.1016/j.ijsu.2019.12.034.

[57]

DongDH, ZhangXF, Lopez-AguiarAG, et al. Recurrence of non-functional pancreatic neuroendocrine tumors after curative resection: a tumor burden-based prediction model[J]. World J Surg, 2021, 45(7): 2134-2141. DOI: 10.1007/s00268-021-06020-8.

[58]

PulvirentiA, PeaA, ChangDK, et al. Clinical and molecular risk factors for recurrence following radical surgery of well-differentiated pancreatic neuroendocrine tumors[J]. Front Med (Lausanne), 2020, 7: 385. DOI: 10.3389/fmed.2020.00385.

[59]

SongC, WangM, LuoY, et al. Predicting the recurrence risk of pancreatic neuroendocrine neoplasms after radical resection using deep learning radiomics with preoperative computed tomography images[J]. Ann Transl Med, 2021, 9(10): 833. DOI: 10.21037/atm-21-25.

[60]

HeidsmaCM, van RoesselS, van DierenS, et al. International validation of a nomogram to predict recurrence after resection of grade 1 and 2 nonfunctioning pancreatic neuroendocrine tumors[J]. Neuroendocrinology, 2022, 112(6): 571-579. DOI: 10.1159/000518757.

[61]

MerolaE, PascherA, RinkeA, et al. Radical resection in entero-pancreatic neuroendocrine tumors: recurrence-free survival rate and definition of a risk score for recurrence[J]. Ann Surg Oncol, 2022, 29(9): 5568-5577. DOI: 10.1245/s10434-022-11837-1.

[62]

BarrettJR, RendellV, PokrzywaC, et al. Adjuvant therapy following resection of gastroenteropancreatic neuroendocrine tumors provides no recurrence or survival benefit[J]. J Surg Oncol, 2020, 121(7): 1067-1073. DOI: 10.1002/jso.25896.

[63]

XieH, LiuJ, YadavS, et al. The role of perioperative systemic therapy in localized pancreatic neuroendocrine neoplasms[J]. Neuroendocrinology, 2020, 110(3-4): 234-245. DOI: 10.1159/000501126.

相关阅读

胰腺神经内分泌肿瘤手术治疗的研究现状

作者:梅文通, 李非

文章来源:中华普通外科杂志, 2022, 37(11)

▲ 点击阅读

胰腺神经内分泌肿瘤热点问题的思考

作者:王文权, 楼文晖, 刘亮

文章来源:中华消化外科杂志, 2022, 21(8)

▲ 点击阅读

中国胰腺神经内分泌肿瘤诊疗指南(2020)

作者:吴文铭,陈洁,白春梅,依荷芭丽·迟,杜奕奇,冯仕庭,霍力,姜玉新,李景南,楼文晖,罗杰,邵成浩,沈琳,王峰,王理伟,王鸥,王于,吴焕文,邢小平,徐建明,薛华丹,薛玲,杨扬,虞先濬,原春辉,赵宏,朱雄增,赵玉沛,中华医学会外科学分会胰腺外科学组

文章来源:中华消化外科杂志, 2021, 20(6)

▲ 点击阅读

平台合作联系方式

电话:010-51322382

邮箱:cmasurgery@163.com

欢迎关注普外空间微信矩阵

普外空间订阅号

普外空间CLUB服务号

普外空间视频号

普外空间小助手

0 阅读:0
普外空间养护

普外空间养护

感谢大家的关注