做数据十年,第一次见这么棒的数据分析方法

博文视点说科技 2024-05-07 19:02:14

很多同学会困惑:到底什么才是数据分析方法?因为网上对于数据分析方法的描述,有些抄袭自营销学书本,比如4P、PEST;有些则抄袭自统计学书本,比如相关分析,回归分析。可真到做分析的时候就傻眼了:眼前的问题到底该P一下还是回归一下?

想真正理解&掌握数据分析方法,当然不能这样“拿着锤子找钉”。工作中的数据分析,要紧密结合业务,服务业务需求。因此理解业务需求,围绕问题找答案,才能理解各种数据分析方法有什么用,该怎么用。

6大类典型的业务需求

一个完整的业务活动,分为六个步骤:了解现状→设定目标→制定计划→监控走势→诊断问题→复盘结果。在每个阶段,业务掌握的信息,想解决的问题是不一样的,因此对数据的需求会不一样(如下图)。

如果是从制定年度经营计划开始,数据分析师就参与到工作中,那么就会完整地经历这6个步骤。

但是,很多同学是中途入职/半道接手工作,最常见的是:

1、从监控开始,先输出日常报表,再发现问题

2、直接接到一个分析任务,就XX问题输出报告

3、事情已经做完了,事后补一份复盘报告

这个时候,很有可能数据分析师对业务都不熟悉,匆忙赶鸭子上架,肯定毫无思路了。此时,至少得把第1步:了解业务现状补齐,然后再对症下药。

了解现状的方法

了解现状阶段,更多是系统地呈现数据指标,让业务看清楚情况。数据指标体系本身有3种结构:并列式、流程式、总分式。有

一些常见的分析方法与这三种形式对应。比如:

杜邦分析法对应总分式指标体系。主要用于评估经营情况好坏,拆解财务指标,监控业务行动结果。UJM方法对应流程式指标体系。主要用于梳理用户行为路径(互联网企业使用的尤其多),看清楚用户转化方式。RFM方法对应并列式指标体系,主要用于对用户消费行为进行分类,区分高中低消费+待唤醒的紧急程度。

(如下图)

需要注意的是:单纯地展示指标并不能得出任何分析结论。至少要展示指标+不同个体间进行对比。

比如:

1、杜邦分析法:两个同行业公司进行比较

2、UJM方法:两个不同路径进行比较

3、RFM方法:两类用户群体间比较

因此,在了解现状阶段,不要光想着罗列一大堆指标出来,而是思考下:到底选取谁进行对比,才能更好发现业务之间差异性,从而启发业务部门思考。

设定目标的方法

在设定目标阶段,很有可能业务部门想了解:

1、如果不做任何改变,自然情况下业务会发展成啥样?

2、如果增加/减少某项资源投入,业务会发展成啥样?

3、如果改变一种业务做法,业务会发展成啥样?

此时就涉及到预测问题。预测自然发展趋势,一般会运用到时间序列法,根据数据走势的不同,有平滑法、自回归、季节性回归、带季节趋势的回归等方法可用。如果考虑改变资源投入,可以考虑带因果关系回归。因为投入产出之间一般都有函数关系,可以通过数据拟合投入产出曲线,从而模拟调整结果。

如果要改变业务做法,则要先看:业务是否有采取同类措施。如果已有同类做法,则可以参考同类做法的投入产出情况进行推算。如果连做都没做过,那就得先做测试,不然没数据就是空拍脑袋。

需要注意的是:设定目标很多时候要体现领导想法,数据本身只是参考。所以很有可能在做完自然情况预测后,业务部门就会开始拍脑袋了。此时可能不需要复杂的分析方法,而是利用数据指标体系,拆解KPI指标,之后根据领导们的要求增减相关,模拟可能的结果。

制定计划的方法

在制定计划阶段,很有可能业务想把一个大目标拆解下去,落实到具体执行工作中。此时可以使用OGSM方法,这是一套标准的把定性目标落实为定量目标,把定量目标拆解为执行步骤,再监控执行的方法(如下图)。

还有可能,业务想先不自己动手拆,而是看在现有投入产出水平下,理论最优解是什么。此时可以构建投入成本函数,利用本量利分析/线性规划方法,计算理论最优解,供业务参考(如下图)。

同目标设定一样,做计划的时候,很有可能业务完全凭经验,自己估摸一个数字就开干了。过于粗糙的计划,会导致:执行安排不合理、临时调来调去、缺少后备方案,这些都会导致执行过程的问题。

数据分析师如果能提前了解情况,就能在下一步监控走势的时候轻松很多。

监控走势的方法

在监控走势阶段,核心任务是:观察业务是否在预期内发展,是否有异常波动。因此需要数据分析方法,判断业务是否正常。

此时有周期性分析法、投入产出分析、结构分析法、分层分析法、矩阵分析法五种方法可用。

周期性分析法,是根据业务特点,拆解出业务发展随季节变化/生命周期变化/投入产出变化而产生的规律。通过和常规走势对比发现问题。投入产出分析,则是根据业务行动投入力度+过往数据经验,预判可能效果,如果排查:是否因本次业务执行不力,导致数据异常结构分析、分层分析、矩阵分析,则是通过多个业务之间对比,发现被平均数掩盖的问题。还有些常见的说法,比如ABC分类、二八分类,其实都是分层分析的特殊形态(如下图)

在监控走势的时候,这些常规方法,完全可以和监控指标做到一起,做成同一张监控数据看板,在观察到主指标异常以后,直接从总体到具体查看数据情况,看看是哪个部分出了问题,从而极大提高发现问题的效率。

问题诊断的方法

在诊断问题过程中,是否有业务假设是最关键的。

1、如果业务啥都没有,那就只能构建分析逻辑树,层层排查问题

2、如果业务有一个明确假设,可以直接做排除法,验证假设是否成立

3、如果业务已经有应对方案,可以直接做实验,测试方案可行性

虽然一提起问题诊断,人们本能会想到:构建逻辑树。但构建完整的逻辑树太过费时费力,且很多假设需要收集外部数据检验,现实工作中不是时时刻刻都有这么充足的数据供应。因此诊断问题时,尽可能先找业务假设,快速输出结论。

验证业务假设的时候,是否做实验是最关键的区别:

1、如果完全不能做实验,那么只能通过标杆分析(对比好/坏个体),过程诊断(分析业务过程中最拉胯的环节)来输出分析结论。

2、如果能做实验,但不能做抽样测试,那么只能做改进前后对比分析。

3、如果能做实验,且能做抽样测试,那么可以采用统计学方法,检验实验效果。

结果复盘的方法

如果前边5步做到位了,在结果复盘的时候就非常轻松:

1、对比目标、实际差距,下判断:到底做得好不好

2、调取过程监控数据,看执行过程中是否有问题

3、调取问题诊断数据,看问题发生原因及处理的结果

这样综合各项结果的复盘是非常全面的,即包含了结果陈述,又包含了经验总结。

很多同学觉得复盘特别麻烦,是因为没有参与到全流程的工作中,活动结束了才被指派任务要复盘。此时一不了解目标,二不了解过程,自然得从头到尾梳理一遍才能出结果。如果碰上业务自己都没有设定清晰的目标,没有监控过程数据,那就更两眼一抹黑了。

作者著作

▊《商业分析全攻略:用数据分析解决商业问题(全彩)》

接地气的陈老师 著

商业分析的底层逻辑跟接地气的陈老师学数据分析

商业分析有用吗?当然有用!商业分析是行走职场、创业启航的一项必备技能。

作者结合自己多年的工作经验,用生动的语言介绍如何用数据分析解决商业问题。

本书分为6 篇,共17 章,其中第1 篇是概念篇,讲述商业分析的基本概念;第2 篇是基础篇,讲述如何用基础的分析方法评估企业经营状况;第3 篇是进阶篇,讲述如何构建分析体系解决较复杂的问题;第4 篇是高阶篇,讲述如何应对复杂的商业难题;第5 篇是基础实践篇,通过案例讲述如何解决更复杂的商业问题;第6 篇是高阶实践篇,通过案例讲述如何解决商业分析中的疑难杂症。

本书的讲解思路是层层递进的,从简单场景到复杂场景,从基础的方法到复杂的方法。因此,无论读者是否有数据分析基础和经验,都建议从头开始阅读,这样可以一步步提升认知,更快地掌握商业分析的方法。

全书近500页彩印

本书有什么特色

1、通俗易懂。一提及“商业”,人们总会总想到很多高大上的名词;一提“分析”,人们总会想到统计学、数学、算法等复杂概念。本书尽量用浅显易懂的方式,介绍商业+分析的主要概念。并且在每一章开头,都举了生活中例子,让大家容易理解。毫不夸张的说,这是一本人人都读懂的分析书。

2、内容全面。本书覆盖了从投入产出分析,到销售、供应、产品、运营分析的主要场景,对每一类场景下的主要指标,分析思路都有介绍,可以满足众多分析需求。而且,很多商业问题是相互关联的,因此全面的了解分析思路,更容易找到解决问题的答案。

3、层层深入。本书分了初级、中级、高级方法,从基础的指标体系搭建,数据解读,到中级的销售、运营、产品分析体系搭建,到一些高级复杂难题都有涉及。这些问题,一般的数据分析书(特别是工具类书)极少涉及,却又经常在工作中困扰大家。本书都给予了深入探讨。当然,不见得就100%能解决所有问题,但一定能给大家很多启发。

0 阅读:0

博文视点说科技

简介:感谢大家的关注