函数y=arctan(3x+1)+2x的一阶和二阶三阶导数计算

吉禄学阁课程 2024-04-15 08:12:43

函数y=arctan(3x+1)+2x的一阶和二阶三阶导数计算

主要内容:

本文主要用复合函数、和函数和函数商求导法则,并用幂函数、反正切函数的导数公式,介绍函数y=arctan(3x+1)+2x的三阶导数计算步骤。

导数公式:

本题主要用到的导数公式如下,其中c为常数:

A.若函数y=c,则导数dy/dx=0;

B.若函数y=cx,则导数dy/dx=c;

C.若函数y=arctanx,则导数dy/dx=1/(1+x^2)。

一阶导数计算:

因为:y=arctan(3x+1)+2x,由反正切和一次函数导数公式有:

所以:dy/dx=3/[1+(3x+1)^2]+2。

二阶导数计算:

因为:dy/dx=3x /[1+(3x+1)^2]+2,由函数商的求导法则有:

所以:d^2y/dx^2=-3*2(3x+1)*3/[1+(3x+1)^2]^2+0,

=-18(3x+1)/ [1+(3x+1)^2]^2。

三阶导数计算:

因为: d^2y/dx^2=-18 (3x+1)/ [1+(3x+1)^2]^2,

所以:

d^2y/dx^2=-18*{3[1+(3x+1)^2]^2-(3x+1)*2*[1+(3x+1)^2]*6(3x+1)}/ [1+(3x+1)^2]^4

=-18*{3 [1+(3x+1)^2]-(3x+1)*2*6 (3x+1)}/ [1+(3x+1)^2]^3

=-18*3{ [1+(3x+1)^2]-4(3x+1)(3x+1)}/ [1+(3x+1)^2]^3

=-18*3{ [1+(3x+1)^2]-4(3x+1)^2}/ [1+(3x+1)^2]^3

=18*3 [3(3x+1)^2-1] / [1+(3x+1)^2]^3。

0 阅读:0

吉禄学阁课程

简介:感谢大家的关注